Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Solar-driven photo-thermal catalytic CO2 methanation reaction is a promising technology to alleviate the problems posed by greenhouse gases emissions. However, designing advanced photo-thermal catalysts remains a research challenge for CO2 methanation reaction. In this work, a series of ABO3 (A = lanthanide, B = transition metal) perovskite catalysts with Ce-substituted LaNiO3 (La1−xCexNiO3, x = 0, 0.2, 0.5, 0.8, 1) were synthesized for CO2 methanation. The La0.2Ce0.8NiO3 exhibited the highest CH4 formation rate of 258.9 mmol·g−1·hcat−1, CO2 conversion of 55.4% and 97.2% CH4 selectivity at 300 °C with the light intensity of 2.9 W·cm−2. Then the catalysts were thoroughly analyzed by physicochemical structure and optical properties characterizations. The partial substitution of the A-site provided more active sites for the adsorption and activation of CO2/H2. The sources of the active sites were considered to be the oxygen vacancies (Ov) created by lattice distortions due to different species of ions (La3+, Ce4+, Ce3+) and exsolved Ni0 by H2 reduction. The catalysts have excellent light absorption absorbance and low electron–hole (e−/h+) recombination rate, which greatly contribute to the excellent performance in photo-thermal synergistic catalysis (PTC) CO2 methanation. The results of in situ irradiated electron paramagnetic resonance spectrometer (ISI-EPR) and ISI-X-ray photoelectron spectroscopy (XPS) indicated that the aggregation of unpaired electrons near the defects and Ni metal (from La and Ce ions to Ov and Ni0) accelerated adsorption and activation of CO2/H2. At last, the catalyst properties and structure were correlated with the proposed reaction mechanism from the in situ diffuse reflection infrared Fourier transform spectrum (DRIFTS) measurements. The in situ precipitation of the B-site enhanced the dispersion of Ni, while its enriched photoelectrons upon illumination further promote hydrogen dissociation. More H* spillover accelerated the rate-determining step (RDS) of HCOO* hydrogenation. This work provides the theoretical basis for the development of catalysts and industrial application.
Chen, Y.; Zhang, Y. M.; Fan, G. Z.; Song, L. Z.; Jia, G.; Huang, H. T.; Ouyang, S. X.; Ye, J. H.; Li, Z. S.; Zou, Z. G. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235–3251.
Chen, C.; Jiao, F.; Lu, B. C.; Liu, T. X.; Liu, Q. B.; Jin, H. G. Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles. Carb. Neutrality 2023, 2, 9.
Bian, J.; Zhang, Z. Q.; Liu, Y.; Chen, E. Q.; Tang, J. W.; Jing, L. Q. Strategies and reaction systems for solar-driven CO2 reduction by water. Carb. Neutrality 2022, 1, 5.
Zhang, K.; Gao, Q.; Xu, C. P.; Zhao, D. W.; Zhu, Q. B.; Zhu, Z. H.; Wang, J.; Liu, C.; Yu, H. T.; Sun, C. et al. Current dilemma in photocatalytic CO2 reduction: Real solar fuel production or false positive outcomings. Carb. Neutrality 2022, 1, 10.
Tan, Y. B.; Jin, H.; Mao, S. S.; Shen, S. H. Surface hydrophobicity-hydrophilicity switching induced interface heat and water transfer enhancement for high-efficiency solar steam generation. Carb. Neutrality 2023, 2, 11.
Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.
Verma, R.; Belgamwar, R.; Chatterjee, P.; Bericat-Vadell, R.; Sa, J.; Polshettiwar, V. Nickel-laden dendritic plasmonic colloidosomes of black gold: Forced plasmon mediated photocatalytic CO2 hydrogenation. ACS Nano 2023, 17, 4526–4538.
Tang, Y. X.; Zhao, T. T.; Han, H. C.; Yang, Z. Y.; Liu, J. R.; Wen, X. D.; Wang, F. L. Ir-CoO active centers supported on porous Al2O3 nanosheets as efficient and durable photo-thermal catalysts for CO2 conversion. Adv. Sci. 2023, 10, 2300122.
Li, W. J.; Zhang, Y. P.; Wang, Y. H.; Ran, W. G.; Guan, Q. H.; Yi, W. C.; Zhang, L. L.; Zhang, D. P.; Li, N.; Yan, T. J. Graphdiyne facilitates photocatalytic CO2 hydrogenation into C2+ hydrocarbons. Appl. Catal. B: Environ. 2024, 340, 123267.
Li, N. X.; Liu, M.; Yang, B.; Shu, W. X.; Shen, Q. H.; Liu, M. C.; Zhou, J. C. Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation. J. Phys. Chem. C 2017, 121, 2923–2932.
Xiong, Y.; Liu, X.; Hu, Y.; Gu, D.; Jiang, M. H.; Tie, Z.; Jin, Z. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Res. 2022, 15, 4965–4972.
O’Brien, P. G.; Sandhel, A.; Wood, T. E.; Ali, F. M.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.
Chen, B. R.; Nguyen, V. H.; Wu, J. C. S.; Martin, R.; Kočí, K. Production of renewable fuels by the photohydrogenation of CO2: Effect of the Cu species loaded onto TiO2 photocatalysts. Phys. Chem. Chem. Phys. 2016, 18, 4942–4951.
Gao, M. M.; Zhang, T. X.; Ho, G. W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 2022, 15, 9985–10005.
Onrubia-Calvo, J. A.; Bermejo-López, A.; Pérez-Vázquez, S.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R. Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane. Fuel 2022, 320, 123842.
Lim, H. S.; Kim, G.; Kim, Y.; Lee, M.; Kang, D.; Lee, H.; Lee, J. W. Ni-exsolved La1− x Ca x NiO3 perovskites for improving CO2 methanation. Chem. Eng. J. 2021, 412, 127557.
Zhao, S. H.; Luo, Y. D.; Li, C. H.; Ren, K. K.; Zhu, Y. Y.; Dou, W. D. High-performance photothermal catalytic CO2 reduction to CH4 and CO by ABO3 (A = La, Ce; B = Ni, Co, Fe) perovskite nanomaterials. Ceram. Int. 2023, 49, 20907–20919.
Chen, H. Q.; Yu, H.; Peng, F.; Wang, H. J.; Yang, J. Q.; Pan, M. Efficient and stable oxidative steam reforming of ethanol for hydrogen production: Effect of in situ dispersion of Ir over Ir/La2O3. J. Catal. 2010, 269, 281–290.
Yang, E. H.; Moon, D. J. Synthesis of LaNiO3 perovskite using an EDTA-cellulose method and comparison with the conventional Pechini method: Application to steam CO2 reforming of methane. RSC Adv. 2016, 6, 112885–112898.
Grabchenko, M.; Pantaleo, G.; Puleo, F.; Kharlamova, T. S.; Zaikovskii, V. I.; Vodyankina, O.; Liotta, L. F. Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catal. Today 2021, 382, 71–81.
Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Poston, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92.
Li, K.; Chang, X.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Assabumrungrat, S.; Zhao, Z. J.; Zeng, L.; Gong, J. L. Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Appl. Catal. B: Environ. 2019, 259, 118092.
Soni, K.; Yadav, E.; Harisankar, S.; Mavani, K. R. Influence of Ce doping and thickness on the structure and non-Fermi liquid behavior of LaNiO3 thin films. J. Phys. Chem. Solids 2020, 141, 109398.
Moradi, G. R.; Rahmanzadeh, M. The influence of partial substitution of alkaline earth with La in the LaNiO3 perovskite catalyst. Catal. Commun. 2012, 26, 169–172.
Choudhary, V. R.; Uphade, B. S.; Belhekar, A. A. Oxidative conversion of methane to syngas over LaNiO3 perovskite with or without simultaneous steam and CO2 reforming reactions: Influence of partial substitution of La and Ni. J. Catal. 1996, 163, 312–318.
Onrubia-Calvo, J. A.; Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R. Ca doping effect on the performance of La1− x Ca x NiO3/CeO2-derived dual function materials for CO2 capture and hydrogenation to methane. Appl. Catal. B: Environ. 2023, 321, 122045.
Ghafoor, A.; Bibi, I.; Majid, F.; Kamal, S.; Ata, S.; Nazar, N.; Iqbal, M.; Raza, M. A. S.; Almoneef, M. M. Ce and Fe doped LaNiO3 synthesized by micro-emulsion route: Effect of doping on visible light absorption for photocatalytic application. Mater. Res. Express 2021, 8, 085009.
Zhang, Z. Y.; Li, T.; Sun, X. L.; Luo, D. C.; Yao, J. L.; Yang, G. D.; Xie, T. Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst. J. Catal. 2024, 430, 115303.
Yang, Z.; Zheng, D. J.; Yue, X. Y.; Wang, K.; Hou, Y. D.; Dai, W. X.; Fu, X. Z. The synergy of Ni doping and oxygen vacancies over CeO2 in visible light-assisted thermal catalytic methanation reaction. Appl. Surf. Sci. 2023, 615, 156311.
Wang, Y. N.; Chan, Y. S.; Zhang, R. J.; Yan, B. H. Insights into the contribution of oxygen vacancies on CO2 activation for dry reforming of methane over ceria-based solid solutions. Chem. Eng. J. 2024, 481, 148360.
Ren, J.; Mebrahtu, C.; van Koppen, L.; Martinovic, F.; Hofmann, J. P.; Hensen, E. J. M.; Palkovits, R. Enhanced CO2 methanation activity over La2− x Ce x NiO4 perovskite-derived catalysts: Understanding the structure–performance relationships. Chem. Eng. J. 2021, 426, 131760.
Tan, T. H.; Xie, B. Q.; Ng, Y. H.; Abdullah, S. F. B.; Tang, H. Y. M.; Bedford, N.; Taylor, R. A.; Aguey-Zinsou, K. F.; Amal, R.; Scott, J. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 2020, 3, 1034–1043.
Wei, X. R.; Johnson, G.; Ye, Y. F.; Cui, M. Y.; Yu, S. W.; Ran, Y. H.; Cai, J.; Liu, Z.; Chen, X.; Gao, W. P. et al. Surfactants used in colloidal synthesis modulate ni nanoparticle surface evolution for selective CO2 hydrogenation. J. Am. Chem. Soc. 2023, 145, 14298–14306.
Golovanova, V.; Spadaro, M. C.; Arbiol, J.; Golovanov, V.; Rantala, T. T.; Andreu, T.; Morante, J. R. Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2-based catalyst. Appl. Catal. B: Environ. 2021, 291, 120038.
Gao, X. Y.; Wang, Z. Y.; Huang, Q. Y.; Jiang, M. L.; Askari, S.; Dewangan, N.; Kawi, S. State-of-art modifications of heterogeneous catalysts for CO2 methanation—Active sites, surface basicity and oxygen defects. Catal. Today 2022, 402, 88–103.
Singh, S.; Zubenko, D.; Rosen, B. A. Influence of LaNiO3 shape on its solid-phase crystallization into coke-free reforming catalysts. ACS Catal. 2016, 6, 4199–4205.
Onrubia-Calvo, J. A.; Pereda-Ayo, B.; González-Marcos, J. A.; Bueno-López, A.; González-Velasco, J. R. Design of CeO2-supported LaNiO3 perovskites as precursors of highly active catalysts for CO2 methanation. Catal. Sci. Technol. 2021, 11, 6065–6079.
Aziz, M. A. A.; Jalil, A. A.; Wongsakulphasatch, S.; Vo, D. V. N. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: A short review. Catal. Sci. Technol. 2020, 10, 35–45.
Onrubia-Calvo, J. A.; López-Rodríguez, S.; Villar-García, I. J.; Pérez-Dieste, V.; Bueno-López, A.; González-Velasco, J. R. Molecular elucidation of CO2 methanation over a highly active, selective and stable LaNiO3/CeO2-derived catalyst by in situ FTIR and NAP-XPS. Appl. Catal. B: Environ. 2024, 342, 123367.
Huang, J.; Li, X.; Wang, X.; Fang, X. Z.; Wang, H. M.; Xu, X. L. New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating Ni and MgO roles and support effects. J. CO2 Util. 2019, 33, 55–63.
Xi, Z. Y.; Liu, Z.; Yang, L. L.; Tang, K.; Li, L.; Shen, G. H.; Zhang, M. L.; Li, S.; Guo, Y. F.; Tang, W. H. Comprehensive study on ultra-wide band gap La2O3/ε-Ga2O3 p–n heterojunction self-powered deep-UV photodiodes for flame sensing. ACS Appl. Mater. Interfaces 2023, 15, 40744–40752.
Liu, Z. Y.; Zhang, F.; Rui, N.; Li, X.; Lin, L. L.; Betancourt, L. E.; Su, D.; Xu, W. Q.; Cen, J. J.; Attenkofer, K. et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ru δ +–Ce3+ interactions for enhanced conversion. ACS Catal. 2019, 9, 3349–3359.
Wang, Y.; Arandiyan, H.; Bartlett, S. A.; Trunschke, A.; Sun, H. Y.; Scott, J.; Lee, A. F.; Wilson, K.; Maschmeyer, T.; Schlögl, R. et al. Inducing synergy in bimetallic RhNi catalysts for CO2 methanation by galvanic replacement. Appl. Catal. B: Environ. 2020, 277, 119029.
Xu, X. L.; Tong, Y. Y.; Huang, J.; Zhu, J.; Fang, X. Z.; Xu, J. W.; Wang, X. Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations. Fuel 2021, 283, 118867.
Xie, Y. F.; De Coster, V.; Buelens, L.; Poelman, H.; Tunca, B.; Seo, J. W.; Detavernier, C.; Galvita, V. Tuning CO2 methanation selectivity via MgO/Ni interfacial sites. J. Catal. 2023, 426, 162–172.
Huynh, H. L.; Zhu, J.; Zhang, G. H.; Shen, Y. L.; Tucho, W. M.; Ding, Y.; Yu, Z. X. Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. J. Catal. 2020, 392, 266–277.