Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Elucidation the relationship between electrode potentials and heterogeneous electrocatalytic reactions has attracted widespread attention. Herein we construct the well-defined Mn single-atom (MnSA) catalyst with four N-coordination through a simple thermal pyrolysis preparation method to investigate the electrode potential micro-environments effect on carbon dioxide reduction reactions (CO2RR) and oxygen reduction reactions (ORR). MnSA catalysts generate higher CO production Faradaic efficiency of exceeding 90% at −0.9 V for CO2RR and higher H2O2 yield from 0.1 to 0.6 V with excellent ORR activity. Density functional theory (DFT) calculations based on constant potential models were performed to study the mechanism of MnSA on CO2RR. The thermodynamic energy barrier of CO2RR is lowest at −0.9 V vs. reversible hydrogen electrode (RHE). Similar DFT calculations on the H2O2 yield of ORR showed that the H2O2 yield at 0.2 V was higher. This study provides a reasonable explanation for the role of electrode potential micro-environments.
Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.
Wang, K. L.; Huang, D. Y.; Guan, Y. C.; Liu, F.; He, J.; Ding, Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction. ACS Catal. 2021, 11, 14428–14438.
Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.
Wang, T. W.; Zhang, Q.; Lian, K.; Qi, G. C.; Liu, Q.; Feng, L. G.; Hu, G. Z.; Luo, J.; Liu, X. J. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO2 electrolysis. J. Colloid Interface Sci. 2024, 655, 176–186.
Zhang, F. X.; Liu, X. P.; Chen, Y.; Tian, M.; Yang, T. F.; Zhang, J.; Gao, S. Y. Ordered mesoporous carbon fiber bundles with high-density and accessible Fe-N X active sites as efficient ORR catalysts for Zn-air batteries. Chin. Chem. Lett. 2023, 34, 108142.
Lei, T.; Zhang, X.; Jung, J.; Cai, Y. X.; Hou, X. F.; Zhang, Q.; Qiao, J. L. Continuous electroreduction of carbon dioxide to formate on Tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. Catal. Today 2018, 318, 32–38.
Qiao, J. Y.; Bao, Z. H.; Kong, L. Q.; Liu, X. Y.; Lu, C. J.; Ni, M.; He, W.; Zhou, M.; Sun, Z. M. MOF-derived heterostructure CoNi/CoNiP anchored on MXene framework as a superior bifunctional electrocatalyst for zinc-air batteries. Chin. Chem. Lett. 2023, 34, 108318.
Pan, Y.; Li, M.; Mi, W. L.; Wang, M. M.; Li, J. X.; Zhao, Y. L.; Ma, X. L.; Wang, B.; Zhu, W.; Cui, Z. M. et al. Single-atomic Mn sites coupled with Fe3C nanoparticles encapsulated in carbon matrixes derived from bimetallic Mn/Fe polyphthalocyanine conjugated polymer networks for accelerating electrocatalytic oxygen reduction. Nano Res. 2022, 15, 7976–7985.
Zheng, W. Z.; Wang, D. S.; Cui, W. J.; Sang, X. H.; Qin, X. T.; Zhao, Z. L.; Li, Z. J.; Yang, B.; Zhong, M.; Lei, L. C. et al. Accelerating industrial-level CO2 electroreduction kinetics on isolated zinc centers via sulfur-boosted bicarbonate dissociation. Energy Environ. Sci. 2023, 16, 1007–1015.
Zheng, W. Z.; Yang, X. X.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Hou, Y. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew. Chem., Int. Ed. 2023, 62, e202307283.
Wang, M. M.; Li, M.; Liu, Y. Q.; Zhang, C.; Pan, Y. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction. Nano Res. 2022, 15, 4925–4941.
Hu, X. Z.; Liu, Y. N.; Cui, W. J.; Yang, X. X.; Li, J. T.; Zheng, S. X.; Yang, B.; Li, Z. J.; Sang, X. H.; Li, Y. Y. et al. Boosting industrial-level CO2 electroreduction of N-doped carbon nanofibers with confined tin-nitrogen active sites via accelerating proton transport kinetics. Adv. Funct. Mater. 2023, 33, 2208781.
Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.
Liang, L. H.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.
Chen, Y.; Wan, Q.; Cao, L. R.; Gao, Z.; Lin, J.; Li, L.; Pan, X. L.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185.
Wang, T. W.; Gao, S. S.; Wei, T. R.; Qin, Y. J.; Zhang, S. S.; Ding, J. Y.; Liu, Q.; Luo, J.; Liu, X. J. Co nanoparticles confined in mesoporous Mo/N co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chem.—Eur. J. 2023, 29, e202204034.
Liu, H.; Jiang, L. Z.; Khan, J.; Wang, X. X.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y.; Han, L. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. 2023, 135, e202214988.
Xie, J. X.; Zhong, L. J.; Yang, X.; He, D. Q.; Lin, K. L.; Chen, X. X.; Wang, H.; Gan, S. Y.; Niu, L. Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H2O2 in acidic media. Chin. Chem. Lett. 2024, 35, 108472.
Xu, D.; Hong, X. L.; Liu, G. L. Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover. J. Catal. 2021, 393, 207–214.
Chougule, S. S.; Jeffery, A. A.; Chowdhury, S. R.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte. Carbon Energy 2023, 5, e293.
Chen, J. Y.; Wang, D. S.; Yang, X. X.; Cui, W. J.; Sang, X. H.; Zhao, Z. L.; Wang, L. G.; Li, Z. J.; Yang, B.; Lei, L. C. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202215406.
Zhao, Y. L.; Chen, H. C.; Ma, X. L.; Li, J. Y.; Yuan, Q.; Zhang, P.; Wang, M. M.; Li, J. X.; Li, M.; Wang, S. F. et al. Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe-N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 2024, 36, 2308243.
Pedersen, P. D.; Melander, M. M.; Bligaard, T.; Vegge, T.; Honkala, K.; Hansen, H. A. Grand canonical DFT investigation of the CO2RR and HER reaction mechanisms on MoTe2 edges. J. Phys. Chem. C 2023, 127, 18855–18864.
Zhang, W.; Guo, X. M.; Li, C.; Xue, J. Y.; Xu, W. Y.; Niu, Z.; Gu, H. W.; Redshaw, C.; Lang, J. P. Ultralong nitrogen/sulfur co-doped carbon nano-hollow-sphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis. Carbon Energy 2023, 5, e317.
MacArthur, K. E.; Polani, S.; Klingenhof, M.; Gumbiowski, N.; Möller, T.; Paciok, P.; Kang, J. Q.; Epple, M.; Basak, S.; Eichel, R. A. et al. Post-synthesis heat treatment of doped PtNi-alloy fuel-cell catalyst nanoparticles studied by in-situ electron microscopy. ACS Appl. Energy Mater. 2023, 6, 5959–5967.
Xia, Z. M.; Xiao, H. Grand canonical ensemble modeling of electrochemical interfaces made simple. J. Chem. Theory Comput. 2023, 19, 5168–5175.
Zhao, X. H.; Liu, Y. Y. Unveiling the active structure of single nickel atom catalysis: Critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777.
Liu, D. Y.; Zhang, Y.; Liu, H.; Rao, P.; Xu, L.; Chen, D.; Tian, X. L.; Yang, J. Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis. Carbon Energy 2023, 5, e324.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.
Jiang, F.; Li, Y. C.; Pan, Y. Design principles of single-atom catalysts for oxygen evolution reaction: From targeted structures to active sites. Adv. Mater. 2024, 36, 2306309.
Chen, J. Y.; Wang, T. T.; Wang, X. Y.; Yang, B.; Sang, X. H.; Zheng, S. X.; Yao, S. Y.; Li, Z. J.; Zhang, Q. H.; Lei, L. C. et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv. Funct. Mater. 2022, 32, 2110174.
Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.
Wu, W. B.; Zhu, J. Y.; Tong, Y.; Xiang, S. F.; Chen, P. Z. Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Res. 2024, 17, 3684–3692.
Zhu, J. X.; Lv, L.; Zaman, S.; Chen, X. B.; Dai, Y. H.; Chen, S. H.; He, G. J.; Wang, D. S.; Mai, L. Q. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ. Sci. 2023, 16, 4812–4833.
Wang, T. T.; Huang, J. C.; Sang, W.; Zhou, C.; Zhang, B. H.; Zhu, W.; Du, K.; Kou, Z. K.; Wang, S. X. Correlative Mn-Co catalyst excels Pt in oxygen reduction reaction of quasi-solid-state zinc-air batteries. Nano Res. 2024, 17, 4118–4124.
Zhang, P.; Chen, K.; Li, J. Y.; Wang, M. M.; Li, M.; Liu, Y. Q.; Pan, Y. Bifunctional single atom catalysts for rechargeable zinc-air batteries: From dynamic mechanism to rational design. Adv. Mater. 2023, 35, 2303243.
Wang, H. L.; Li, J.; Huang, M. R.; Cui, J. Z.; Cheng, Z. Y.; Yu, R.; Zhu, H. W. Single-atom alloys prepared by two-step thermal evaporation. Nano Res. 2024, 17, 2808–2813.
Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, P.; Cai, C. X. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.
Liu, A. M.; Guan, W. X.; Wu, K. F.; Ren, X. F.; Gao, L. G.; Ma, T. L. Density functional theory study of nitrogen-doped graphene as a high-performance electrocatalyst for CO2RR. Appl. Surf. Sci. 2021, 540, 148319.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.
Li, J. N.; Yan, S. H.; Li, G.; Wang, Y.; Xu, H. Y.; Duan, G. B. Synthesis of core–shell ZIF-8@In2O3 nanorods and enhancement of selectivity to NO2. China Powder Sci. Technol. 2023, 29, 101–109.
Cao, H.; Zhang, Z. S.; Chen, J. W.; Wang, Y. G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606–6617.
Guo, S.; Liu, Y. W.; Wang, Y. L.; Dong, K.; Zhang, X. P.; Zhang, S. J. Interfacial role of ionic liquids in CO2 electrocatalytic reduction: A mechanistic investigation. Chem. Eng. J. 2023, 457, 141076.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Ehrlich, S.; Moellmann, J.; Reckien, W.; Bredow, T.; Grimme, S. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem 2011, 12, 3414–3420.
Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 138, 4229–4236.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Cai, Y. M.; Lin, C. B.; Cha, X. W.; Wu, Y. L.; Rao, X. P.; Tan, K. B.; Cai, D. R.; Zhuang, G. L.; Zhan, G. W. Antiover-reduction of Ni/In2O3 nanocatalysts by atomic layer deposition of Al2O3 films for durable CO2 hydrogenation to methanol. ACS Catal. 2024, 14, 8463–8479.
Chen, X.; Sun, Z. G.; Cai, B.; Li, X. M.; Zhang, S. H.; Fu, D.; Zou, Y. S.; Fan, Z. Y.; Zeng, H. B. Substantial improvement of operating stability by strengthening metal–halogen bonds in halide perovskites. Adv. Funct. Mater. 2022, 32, 2112129.
Park, J. H.; Saito, N.; Kawasumi, M. Novel solution plasma synthesis of highly durable carbon shell encapsulated platinum-based cathode catalyst for polymer electrolyte membrane fuel cells. Carbon 2023, 214, 118364.
Liu, J. C.; Luo, F.; Li, J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J. Am. Chem. Soc. 2023, 145, 25264–25273.
Wang, Y.; Li, J. L.; Shi, W. X.; Zhang, Z. M.; Guo, S.; Si, R.; Liu, M.; Zhou, H. C.; Yao, S.; An, C. H. et al. Unveiling single atom nucleation for isolating ultrafine fcc Ru nanoclusters with outstanding dehydrogenation activity. Adv. Energy Mater. 2020, 10, 2002138.
Wu, H. E.; Fei, G. T.; Gao, X. D.; Guo, X.; Gong, X. X.; Ma, X. L.; Wang, Q.; Xu, S. H. Research progress on preparation and application of polyaniline and its composite materials. China Powder Sci. Technol. 2023, 29, 70–80.
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.
Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.
Manceau, A.; Marcus, M. A.; Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 2012, 97, 816–827.
Han, H.; Im, J.; Lee, M.; Choo, D. N-bridged Ni and Mn single-atom pair sites: A highly efficient electrocatalyst for CO2 conversion to CO. Appl. Catal. B: Environ. 2023, 320, 121953.
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
Kang, J.; Wang, H.; Ji, S.; Key, J.; Wang, R. F. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J. Power Sources 2014, 251, 363–369.
Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.
Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.
Zhang, C.; Liu, W.; Song, M.; Zhang, J. J.; He, F.; Wang, J.; Xiong, M.; Zhang, J.; Wang, D. L. Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B: Environ. 2022, 307, 121173.
Xu, S. C.; Kim, Y.; Higgins, D.; Yusuf, M.; Jaramillo, T. F.; Prinz, F. B. Building upon the Koutecky–Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim. Acta 2017, 255, 99–108.
Sahin, N. E.; Napporn, T. W.; Dubau, L.; Kadirgan, F.; Léger, J. M.; Kokoh, K. B. Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method. Appl. Catal. B: Environ. 2017, 203, 72–84.
Wu, W. J.; Han, Z.; Zhang, F. Y.; Liu, P. F.; Li, J. Preparation of high-purity nano iron oxide. China Powder Sci. Technol. 2024, 30, 56–65.
Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.
Liu, W. J.; Liu, W. X.; Hou, T.; Ding, J. Y.; Wang, Z. G.; Yin, R. L.; San, X. Y.; Feng, L. G.; Luo, J.; Liu, X. J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 2024, 17, 4797–4806.
Ji, Y. Q.; Yu, Z. H.; Yan, L. G.; Song, W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci. Technol. 2023, 29, 100–107.
Chen, S. S.; Qi, G. C.; Yin, R. L.; Liu, Q.; Feng, L. G.; Feng, X. C.; Hu, G. Z.; Luo, J.; Liu, X. J.; Liu, W. X. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale 2023, 15, 19577–19585.