AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The resistance switching performance of the memristor improved effectively by inserting carbon quantum dots (CQDs) for digital information processing

Tianqi Yu1,§Jie Li1,§Wei Lei1Suhaidi Shafe2Mohd Nazim Mohtar2Nattha Jindapetch3Paphavee van Dommelen4Zhiwei Zhao1( )
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai Campus 15 Karnjanavanich, Hat Yai, Songkhla 90110, Thailand

§ Tianqi Yu and Jie Li contributed equally to this work.

Show Author Information

Graphical Abstract

The performance of memristors is improved by inserting carbon quantum dots (CQDs) for high-precision recognition and convolutional image processing.

Abstract

As an emerging information device that adapts to development of the big data era, memristor has attracted much attention due to its advantage in processing massive data. However, the nucleation and growth of conductive filaments often exhibit randomness and instability, which undoubtedly leads to a wide and discrete range of switching parameters, damaging the electrical performance of device. In this work, a strategy of inserting carbon quantum dots (CQDs) into graphene oxide (GO) resistance layer is utilized to improve the stability of the switching parameters and the reliability of the device is improved. Compared with GO-based devices, GO/CQDs/GO-based devices exhibit a more stable resistance switching curve, low power, lower and more concentrated threshold voltage parameters with lower variation coefficient, faster switching speed, and more stable retention and endurance. The cause-inducing performance improvement may be attributed to the local electric field generated by CQDs in resistance switching that effectively guides the formation and rupture of conductive filaments, which optimizes the effective migration distance of Ag+, thereby improving the uniformity of resistance switching. Additionally, a convolutional neural network model is constructed to identify the CIFAR-10 data set, showing the high recognition accuracy of online and offline learning. The cross-kernel structure is used to further implement convolutional image processing through multiplication and accumulation operations. This work provides a solution to improve the performance of memristors, which can contribute to developing digital information processing.

Electronic Supplementary Material

Download File(s)
6801_ESM.pdf (2.3 MB)

References

[1]

Huh, W.; Lee, D.; Lee, C. H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092.

[2]

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

[3]

Sun, F. Q.; Lu, Q. F.; Feng, S. M.; Zhang, T. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 2021, 15, 3875–3899.

[4]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[5]

Ling, S. T.; Zhang, C.; Ma, C. L.; Li, Y.; Zhang, Q. C. Emerging MXene-based memristors for in-memory, neuromorphic computing, and logic operation. Adv. Funct. Mater. 2023, 33, 2208320.

[6]

Chen, S. C.; Mahmoodi, M. R.; Shi, Y. Y.; Mahata, C.; Yuan, B.; Liang, X. H.; Wen, C.; Hui, F.; Akinwande, D.; Strukov, D. B. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 2020, 3, 638–645.

[7]

Zhang, G. H.; Xiong, Z. Y.; Gong, Y.; Zhu, Z. X.; Lv, Z. Y.; Wang, Y.; Yang, J. Q.; Xing, X. C.; Wang, Z. P.; Qin, J. R. et al. Polyoxometalate accelerated cationic migration for reservoir computing. Adv. Funct. Mater. 2022, 32, 2204721.

[8]

Duan, H.; Cheng, S. Q.; Qin, L.; Zhang, X. L.; Xie, B. Y.; Zhang, Y.; Jie, W. J. Low-power memristor based on two-dimensional materials. J. Phys. Chem. Lett. 2022, 13, 7130–7138.

[9]

Li, Y. S.; Chen, S.; Yu, Z. G.; Li, S. F.; Xiong, Y.; Pam, M. E.; Zhang, Y. W.; Ang, K. W. In-memory computing using memristor arrays with ultrathin 2D PdSeO x /PdSe2 heterostructure. Adv. Mater. 2022, 34, 2201488.

[10]

Li, Y.; Ling, S. T.; He, R. Y.; Zhang, C.; Dong, Y.; Ma, C. L.; Jiang, Y. C.; Gao, J.; He, J. H.; Zhang, Q. C. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.

[11]

Duan, X. G.; Cao, Z. L.; Gao, K. K.; Yan, W. T.; Sun, S. Y.; Zhou, G. D.; Wu, Z. H.; Ren, F. G.; Sun, B. Memristor-based neuromorphic chips. Adv. Mater. 2024, 36, 2310704.

[12]

Xu, Z.; Li, Y. X.; Xia, Y.; Shi, C. Y.; Chen, S. J.; Ma, C. L.; Zhang, C.; Li, Y. Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 2024, 34, 2312658.

[13]

Xu, Z. D.; Gao, M.; Yu, L. N.; Lu, L. Y.; Xu, X. G.; Jiang, Y. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films. ACS Appl. Mater. Interfaces 2014, 6, 17823–17830.

[14]

Vishwanath, S. K.; Kim, J. Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications. J. Mater. Chem. C 2016, 4, 10967–10972.

[15]

Au, K.; Gao, X. S.; Wang, J.; Bao, Z. Y.; Liu, J. M.; Dai, J. Y. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO3 thin films. J. Appl. Phys. 2013, 114, 027019.

[16]

Yan, X. B.; Pei, Y. F.; Chen, H. W.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Zhang, L.; Wang, J. J.; Li, X. Y.; Qin, C. Y. et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019, 31, 1805284.

[17]

Yan, X. B.; Qin, C. Y.; Lu, C.; Zhao, J. H.; Zhao, R. J.; Ren, D. L.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L. et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 2019, 11, 48029–48038.

[18]

Wang, R.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734.

[19]

Zhang, Y. Q.; Ma, D. K.; Zhang, Y. G.; Chen, W.; Huang, S. M. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2013, 2, 545–552.

[20]

Yu, H. J.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

[21]

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

[22]

Liu, W.; Zhao, Y. H.; Nguyen, J.; Li, Y.; Jiang, Q.; Lavernia, E. J. Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphenes. Carbon 2009, 47, 3452–3460.

[23]

Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

[24]

Fang, Y.; Zhao, Z. W.; Zhu, M. R.; Weng, Z. J.; Fang, C.; Jia, X. High-responsivity solar-blind ultraviolet photodetectors based on carbon nanodots/graphene hybrids. IEEE Trans. Electron Devices 2021, 68, 1101–1106.

[25]

Fang, Y.; Zhao, Z. W.; Weng, Z. J.; Zhu, M. R.; Lei, W.; Zhu, Z. Y.; Shafie, S. B.; Mohtar, M. N. Variation in the optical properties of carbon dots fabricated by a green and facile strategy for solar-blind UV detection. J. Phys. Chem. C 2022, 126, 5711–5721.

[26]

Liu, Z. Y.; Shan, C. F.; Wei, G. Y.; Wen, J. F.; Jiang, L.; Hu, G. H.; Fang, Z. J.; Tang, T.; Li, M. A novel non-metallic photocatalyst: Phosphorus-doped sulfur quantum dots. Molecules 2023, 28, 3637.

[27]

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

[28]

Chen, Y. Y.; Zhou, Y.; Zhuge, F. W.; Tian, B. B.; Yan, M. G.; Li, Y.; He, Y. H.; Miao, X. S. Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network. npj 2D Mater. Appl. 2019, 3, 31.

[29]

Schranghamer, T. F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2020, 11, 5474.

[30]

Liu, B.; Liu, Z. W.; Chiu, I. S.; Di, M. F.; Wu, Y. R.; Wang, J. C.; Hou, T. H.; Lai, C. S. Programmable synaptic metaplasticity and below femtojoule spiking energy realized in graphene-based neuromorphic memristor. ACS Appl. Mater. Interfaces 2018, 10, 20237–20243.

[31]

Sahu, D. P.; Jetty, P.; Jammalamadaka, S. N. Graphene oxide based synaptic memristor device for neuromorphic computing. Nanotechnology 2021, 32, 155701.

[32]

Tian, H.; Mi, W. T.; Wang, X. F.; Zhao, H. M.; Xie, Q. Y.; Li, C.; Li, Y. X.; Yang, Y.; Ren, T. L. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 2015, 15, 8013–8019.

[33]

Qi, M.; Cao, S.; Yang, L.; You, Q.; Shi, L. B.; Wu, Z. Y. Uniform multilevel switching of graphene oxide-based RRAM achieved by embedding with gold nanoparticles for image pattern recognition. Appl. Phys. Lett. 2020, 116, 163503.

[34]

Abunahla, H.; Halawani, Y.; Alazzam, A.; Mohammad, B. NeuroMem: Analog graphene-based resistive memory for artificial neural networks. Sci. Rep. 2020, 10, 9473.

[35]

Guo, L. Q.; Wen, J.; Cheng, G. G.; Yuan, N. Y.; Ding, J. N. Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes. J. Mater. Chem. C 2016, 4, 9762–9770.

[36]

Lu, Q. F.; Sun, F. Q.; Liu, L.; Li, L. H.; Wang, Y. Y.; Hao, M. M.; Wang, Z. H.; Wang, S. Q.; Zhang, T. Biological receptor-inspired flexible artificial synapse based on ionic dynamics. Microsyst. Nanoeng. 2020, 6, 84.

[37]

Wan, C. J.; Zhu, L. Q.; Liu, Y. H.; Feng, P.; Liu, Z. P.; Cao, H. L.; Xiao, P.; Shi, Y.; Wan, Q. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 2016, 28, 3557–3563.

[38]

Sokolov, A. S.; Ali, M.; Riaz, R.; Abbas, Y.; Ko, M. J.; Choi, C. Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 2019, 29, 1807504.

[39]

Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Kalita, H.; Chung, H. S.; Aina, O.; Jung, Y.; Roy, T. Electronic synapses with near-linear weight update using MoS2/graphene memristors. Appl. Phys. Lett. 2019, 115, 103104.

[40]

Yan, X. B.; Zhang, L.; Yang, Y. Q.; Zhou, Z. Y.; Zhao, J. H.; Zhang, Y. Y.; Liu, Q.; Chen, J. S. Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory. J. Mater. Chem. C 2017, 5, 11046–11052.

[41]

Yu, T. Q.; Wang, D.; Liu, M.; Lei, W.; Shafie, S.; Mohtar, M. N.; Jindapetch, N.; van Paphavee, D.; Zhao, Z. W. A carbon conductive filament-induced robust resistance switching behavior for brain-inspired computing. Mater. Horiz. 2024, 11, 1334–1343.

[42]

Kim, S. K.; Kim, J. Y.; Jang, B. C.; Cho, M. S.; Choi, S. Y.; Lee, J. Y.; Jeong, H. Y. Conductive graphitic channel in graphene oxide-based memristive devices. Adv. Funct. Mater. 2016, 26, 7406–7414.

[43]

Guo, T.; Sun, B.; Ranjan, S.; Jiao, Y. X.; Wei, L.; Zhou, Y. N.; Wu, Y. A. From memristive materials to neural networks. ACS Appl. Mater. Interfaces 2020, 12, 54243–54265.

[44]

Ilyas, N.; Wang, J. Y.; Li, C. M.; Fu, H.; Li, D. Y.; Jiang, X. D.; Gu, D. E.; Jiang, Y. D.; Li, W. Controllable resistive switching of STO: Ag/SiO2-based memristor synapse for neuromorphic computing. J. Mater. Sci. Technol. 2022, 97, 254–263.

[45]

Kim, S. G.; Han, J. S.; Kim, H.; Kim, S. Y.; Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 2018, 3, 1800457.

[46]

Yan, X. B.; He, H. D.; Liu, G. J.; Zhao, Z.; Pei, Y. F.; Liu, P.; Zhao, J. H.; Zhou, Z. Y.; Wang, K. Y.; Yan, H. W. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon. Adv. Mater. 2022, 34, 2110343.

[47]

Yang, J. Q.; Zhang, F.; Xiao, H. M.; Wang, Z. P.; Xie, P.; Feng, Z. H.; Wang, J. J.; Mao, J. Y.; Zhou, Y.; Han, S. T. A perovskite memristor with large dynamic space for analog-encoded image recognition. ACS Nano 2022, 16, 21324–21333.

[48]

Lu, X. F.; Zhang, Y. S.; Wang, N. Z.; Luo, S.; Peng, K. L.; Wang, L.; Chen, H.; Gao, W. B.; Chen, X. H.; Bao, Y. et al. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 2021, 21, 8800–8807.

[49]

Li, C.; Hu, M.; Li, Y. N.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J. M.; Song, W. H.; Dávila, N.; Graves, C. E. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2017, 1, 52–59.

[50]

Zhong, Y. N.; Tang, J. S.; Li, X. Y.; Liang, X. P.; Liu, Z. W.; Li, Y. J.; Xi, Y.; Yao, P.; Hao, Z. Q.; Gao, B. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 2022, 5, 672–681.

[51]

Zhang, Z. F.; Zhao, X. L.; Zhang, X. M.; Hou, X. H.; Ma, X. L.; Tang, S. Z.; Zhang, Y.; Xu, G. W.; Liu, Q.; Long, S. B. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 2022, 13, 6590.

[52]

Lim, S.; Sung, C.; Kim, H.; Kim, T.; Song, J.; Kim, J. J.; Hwang, H. Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems. IEEE Electron Device Lett. 2018, 39, 312–315.

Nano Research
Pages 8438-8446
Cite this article:
Yu T, Li J, Lei W, et al. The resistance switching performance of the memristor improved effectively by inserting carbon quantum dots (CQDs) for digital information processing. Nano Research, 2024, 17(9): 8438-8446. https://doi.org/10.1007/s12274-024-6801-4
Topics:

400

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 May 2024
Revised: 23 May 2024
Accepted: 29 May 2024
Published: 13 July 2024
© Tsinghua University Press 2024
Return