AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unlocking iron-based mixed-phosphate cathode for sodium-ion batteries through off-stoichiometry

Zhaolu Liu1Yongjie Cao1,2,§( )Ning Wang1Hui Yang1Hao Zhang1Xinyue Xu1Nan Wang2Jie Xu3Yao Liu4Junxi Zhang1,§( )Yongyao Xia2,§( )
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

§ Yongjie Cao, Junxi Zhang, and Yongyao Xia contributed equally to this work.

Show Author Information

Graphical Abstract

By incorporating different proportions of phosphate NaFePO4 into the off-stoichiometric pyrophosphate Na3.12Fe2.44(P2O7)2 system, we successfully synthesized novel off-stoichiometric mixed-phosphates Na3.12+xFe2.44+x(P2O7)2(PO4)x, and investigated their electrochemical performance.

Abstract

The off-stoichiometric iron-based phosphate (Na3.12Fe2.44(P2O7)2, denoted as Na3.12) as a low cost and high structure stability cathode material has been widely studied for sodium-ion batteries (SIBs). However, the lower theoretical specific capacity (117 mAh·g−1) has seriously limited its practical application. In this work, we incorporate varying proportion of sodium-iron phosphate (NaFePO4) into the Na3.12 to form a series of new high specific capacity mixed-phosphates Na3.12+xFe2.44+x(P2O7)2(PO4)x cathode materials for SIBs. After optimizing the introduction amount of NaFePO4 into Na3.12, the practical reversible of Na3.12+xFe2.44+x(P2O7)2(PO4)x increased from 92 to 125.2 mAh·g−1. The nano-size Na5.12Fe4.44(P2O7)2(PO4)2 cathode material shows a reversible specific capacity of 125.2 mAh·g−1 at 0.1 C in SIBs. Even at 60 C, it still exhibits a reversible specific capacity of 93.3 mAh·g−1 and keeps a capacity retention ratio of 87% after 3000 cycles at 20 C. Thereby, we present a novel approach to design a series of off-stoichiometric mixed-phosphates cathode materials for SIBs.

Electronic Supplementary Material

Download File(s)
6804_ESM.pdf (3.4 MB)

References

[1]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[2]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[3]

Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A Nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.

[4]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[5]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[6]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[7]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

[8]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[9]

Li, Y. Q.; Zhou, Q.; Weng, S. T.; Ding, F. X.; Qi, X. G.; Lu, J. Z.; Li, Y.; Zhang, X.; Rong, X. H.; Lu, Y. X. et al. Interfacial engineering to achieve an energy density of over 200 Wh·kg−1 in sodium batteries. Nat. Energy 2022, 7, 511–519.

[10]

Lu, Z. Y.; Yang, H. J.; Guo, Y.; He, P.; Wu, S. C.; Yang, Q. H.; Zhou, H. S. Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206340.

[11]

Sun, Y.; Guo, S. H.; Zhou, H. S. Exploration of advanced electrode materials for rechargeable sodium‐ion batteries. Adv. Energy Mater. 2019, 9, 1800212.

[12]

Wang, K.; Wan, J. J.; Xiang, Y. X.; Zhu, J. P.; Leng, Q. Y.; Wang, M.; Xu, L. M.; Yang, Y. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J. Power Sources 2020, 460, 228062.

[13]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[14]

Rudola, A.; Rennie, A. J. R.; Heap, R.; Meysami, S. S.; Lowbridge, A.; Mazzali, F.; Sayers, R.; Wright, C. J.; Barker, J. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 2021, 9, 8279–8302.

[15]

Hu, Y. S.; Li, Y. Q. Unlocking sustainable Na-ion batteries into industry. ACS Energy Lett. 2021, 6, 4115–4117.

[16]

Hu, Y. S.; Lu, Y. X. 2019 nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 2019, 4, 2689–2690

[17]

Liu, Q. N.; Hu, Z.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Dou, S. X. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries. Energy Environ. Sci. 2021, 14, 158–179.

[18]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[19]

Zhao, C. L.; Yao, Z. P.; Wang, Q. D.; Li, H. F.; Wang, J. L.; Liu, M.; Ganapathy, S.; Lu, Y. X.; Cabana, J.; Li, B. H. et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 2020, 142, 5742–5750.

[20]

Ding, F. X.; Zhao, C. L.; Xiao, D. D.; Rong, X. H.; Wang, H. B.; Li, Y. Q.; Yang, Y.; Lu, Y. X.; Hu, Y. S. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 2022, 144, 8286–8295.

[21]

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

[22]

Peng, J.; Zhang, W.; Liu, Q. N.; Wang, J. Z.; Chou, S. L.; Liu, H. K.; Dou, S. X. Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2021, 34, 2108384.

[23]

Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.

[24]

Zhang, H.; Peng, J.; Li, L.; Zhao, Y. N.; Gao, Y.; Wang, J. Z.; Cao, Y. L.; Dou, S. X.; Chou, S. L. Low-cost zinc substitution of iron-based Prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries. Adv. Funct. Mater. 2023, 33, 2210725.

[25]

Cao, Y. J.; Yang, C.; Liu, Y.; Xia, X. P.; Zhao, D. Q.; Cao, Y. J.; Yang, H. S.; Zhang, J. X.; Lu, J.; Xia, Y. Y. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries. ACS Energy Lett. 2020, 5, 3788–3796.

[26]

Cao, Y. J.; Xia, X. P.; Liu, Y.; Wang, N.; Zhang, J. X.; Zhao, D. Q.; Xia, Y. Y. Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. J. Power Sources 2020, 461, 228130.

[27]

Zhao, A. L.; Liu, C. Y.; Ji, F. J.; Zhang, S. H.; Fan, H. M.; Ni, W. H.; Fang, Y. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Revealing the phase evolution in Na4Fe x P4O12+ x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 2023, 8, 753–761.

[28]

Cao, Y. J.; Liu, Y.; Zhao, D. Q.; Xia, X. P.; Zhang, L. C.; Zhang, J. X.; Yang, H. S.; Xia, Y. Y. Highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low-cost energy storage. ACS Sustain. Chem. Eng. 2020, 8, 1380–1387.

[29]

Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K. Y.; Park, Y. U.; Kim, H.; Kim, J.; Lim, H. D.; Yoon, W. S. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 2013, 25, 3614–3622.

[30]

Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard III, W. A.; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545.

[31]

Avdeev, M.; Mohamed, Z.; Ling, C. D.; Lu, J. C.; Tamaru, M.; Yamada, A.; Barpanda, P. Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorg. Chem. 2013, 52, 8685–8693.

[32]

Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J. S.; Jo, Y. N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y. et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study. Adv. Funct. Mater. 2013, 23, 1147–1155.

[33]

Barpanda, P.; Liu, G. D.; Ling, C. D.; Tamaru, M.; Avdeev, M.; Chung, S. C.; Yamada, Y.; Yamada, A. Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 2013, 25, 3480–3487.

[34]

Song, H. J.; Kim, K. H.; Kim, J. C.; Hong, S. H.; Kim, D. W. Superior sodium storage performance of reduced graphene oxide-supported Na3.12Fe2.44(P2O7)2/C nanocomposites. Chem. Commun. 2017, 53, 9316–9319.

[35]

Lander, L.; Tarascon, J. M.; Yamada, A. Sulfate-based cathode materials for Li- and Na-ion batteries. Chem. Rec. 2018, 18, 1394–1408.

[36]

Li, S. Y.; Song, X. S.; Kuai, X. X.; Zhu, W. C.; Tian, K.; Li, X. F.; Chen, M. Z.; Chou, S. L.; Zhao, J. Q.; Gao, L. J. A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage. J. Mater. Chem. A 2019, 7, 14656–14669.

[37]

Dwibedi, D.; Singh, S.; Pranav, S.; Barpanda, P. Phase transformation in Na-Fe-S-O quaternary sulfate cathode materials. AIP Conf. Proc. 2019, 2115, 030566.

[38]

Kim, H.; Yoon, G.; Park, I.; Hong, J.; Park, K. Y.; Kim, J.; Lee, K. S.; Sung, N. E.; Lee, S.; Kang, K. Highly stable iron- and manganese-based cathodes for long-lasting sodium rechargeable batteries. Chem. Mater. 2016, 28, 7241–7249.

[39]

Ha, K. H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F. et al. Na4− α M2+ α /2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater. 2013, 3, 770–776.

[40]

Niu, Y. B.; Xu, M. W.; Cheng, C. J.; Bao, S. J.; Hou, J. K.; Liu, S. G.; Yi, F. L.; He, H.; Li, C. M. Na3.12Fe2.44(P2O7)2/multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 17224–17229.

[41]

Honma, T.; Sato, A.; Ito, N.; Togashi, T.; Shinozaki, K.; Komatsu, T. Crystallization behavior of sodium iron phosphate glass Na2− x Fe1+0.5 x P2O7 for sodium ion batteries. J. Non-Cryst. Solids 2014, 404, 26–31.

[42]

Honma, T.; Ito, N.; Togashi, T.; Sato, A.; Komatsu, T. Triclinic Na2− x Fe1+ x /2P2O7/C glass-ceramics with high current density performance for sodium ion battery. J. Power Sources 2013, 227, 31–34.

[43]

Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

[44]

Yakubovich, O.; Kiriukhina, G.; Simonov, S.; Volkov, A.; Dimitrova, O. Na3(VO)(PO4)(CO3): A synthetic member of the bradleyite phosphate carbonate family with a new type of crystal structure. CrystEngComm 2023, 25, 4024–4032.

[45]

Wang, N.; Wang, R. Q.; Jiang, M. Q.; Zhang, J. X. Electrochemical properties of mixed-phosphates Na x +2Fe x +1(PO4) x (P2O7) with different ratios of PO43−/P2O74−. J. Alloys Compd. 2021, 870, 159382.

[46]

Wu, X. H.; Zhong, G. M.; Yang, Y. Sol–gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J. Power Sources 2016, 327, 666–674.

[47]

Niu, Y. B.; Zhang, Y.; Xu, M. W. A review on pyrophosphate framework cathode materials for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 15006–15025.

Nano Research
Pages 8119-8125
Cite this article:
Liu Z, Cao Y, Wang N, et al. Unlocking iron-based mixed-phosphate cathode for sodium-ion batteries through off-stoichiometry. Nano Research, 2024, 17(9): 8119-8125. https://doi.org/10.1007/s12274-024-6804-1
Topics:

285

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 April 2024
Revised: 30 May 2024
Accepted: 02 June 2024
Published: 11 July 2024
© Tsinghua University Press 2024
Return