AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photothermal properties of Cu@polycarbonate composites with strong localized surface plasmon resonances

Fengyi Wang1,2,3Jiangling He2Junshan Hu2Zhihui Chen2Yumeng Shi1( )Qing-Hua Xu2( )
SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

Copper nanoparticles@polycarbonate composites were synthesized by a facile one-step solvothermal method with strong localized surface plasmon resonances (LSPR). The composites have high photothermal conversion efficiency (PCE) and photothermal stability and were modified on a scouring sponge as light absorption layer, exhibiting excellent interfacial solar evaporation performance.

Abstract

Copper is relatively low cost and highly abundant compared with the well-studied noble metals such as gold and silver. However, the poor plasmonic and high susceptibility towards oxidation limit the study of its optical properties and applications as well. Herein, copper nanoparticles@polycarbonate (Cu@PC) composites were prepared by using a facile one-step solvothermal method. The Cu@PC composites have strong localized surface plasmon resonances (LSPR) due to that the PC shell can induce the particles to form many-particles system with different particle numbers, which not only lead to overlap and hybridize of the LSPR modes, but also shift the LSPR away from the interband transitions, and the PC layer also prevents the oxidation of Cu nanoparticles. The photothermal conversion efficiency of Cu@PC composites reaches 41.1% under 808 nm continuous wave (CW) laser irradiation which is higher than previously reported Cu nanomaterials that have been reported. Meanwhile, the composites also have high photothermal stability. Moreover, interfacial evaporator is prepared by assembling the Cu@PC composites on scouring sponge as light absorption layer which has > 92.8% absorption in entire solar spectrum range. Its seawater evaporation rate is 3.177 kg·m–2·h–1 with a Eevaporator/Ewater of 5.2. The high evaporation rate interfacial evaporator with low cost, simple, and scalable approach shows great application value in the field of photothermal evaporation.

Electronic Supplementary Material

Download File(s)
6805_ESM.pdf (1.9 MB)

References

[1]

Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.

[2]

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

[3]

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

[4]

Zhao, X.; Meng, X. T.; Zou, H. Q.; Zhang, Y. J.; Ma, Y. J.; Du, Y. D.; Shao, Y.; Qi, J.; Qiu, J. S. Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities. Nano Res. 2023, 16, 6015–6038.

[5]

Chen, J. X.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. D. Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int. Ed. 2019, 58, 9275–9281.

[6]

Liu, Z. H.; Xu, B.; Cheng, Y. Q.; Si, M. T.; Chu, X. Q.; Sun, M. T.; Fang, Y. C. Spectral analysis of oxidation on localized surface plasmon resonance of copper nanoparticles thin film. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 303, 123202.

[7]

Zheng, P.; Tang, H. B.; Liu, B. T.; Kasani, S.; Huang, L.; Wu, N. Q. Origin of strong and narrow localized surface plasmon resonance of copper nanocubes. Nano Res. 2019, 12, 63–68.

[8]

Kim, S.; Kim, J. M.; Park, J. E.; Nam, J. M. Nonnoble-metal-based plasmonic nanomaterials: Recent advances and future perspectives. Adv. Mater. 2018, 30, 1704528.

[9]

Rice, K. P.; Walker, E. J.; Stoykovich, M. P.; Saunders, A. E. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J. Phys. Chem. C 2011, 115, 1793–1799.

[10]

Pastoriza-Santos, I.; Sánchez-Iglesias, A.; Rodríguez-González, B.; Liz-Marzán, L. M. Aerobic synthesis of Cu nanoplates with intense plasmon resonances. Small 2009, 5, 440–443.

[11]

Quinten, M.; Kreibig, U. Optical properties of aggregates of small metal particles. Surf. Sci. 1986, 172, 557–577.

[12]

Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255–2261.

[13]

Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

[14]

Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J. Clust. Sci. 1999, 10, 295–317.

[15]

Zhong, Z. Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B 2004, 108, 4046–4052.

[16]

Stewart, I. E.; Ye, S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.

[17]

Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193–3199.

[18]

Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.

[19]

Im, H. G.; Jung, S. H.; Jin, J.; Lee, D.; Lee, J.; Lee, D.; Lee, J. Y.; Kim, I. D.; Bae, B. S. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano 2014, 8, 10973–10979.

[20]

Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

[21]

Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2014, 2, 5309–5316.

[22]

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

[23]

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

[24]

Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. H. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. 2023, 16, 5610–5618.

[25]
Wu, X.; Lu, Y.; Ren, X. H.; Wu, P.; Chu, D. W.; Yang, X. F.; Xu, H. L. Interfacial solar evaporation: From fundamental research to applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202313090.
[26]

Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718.

[27]

Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191.

[28]

Qureshi, A.; Shah, S.; Pelagade, S.; Singh, N. L.; Mukherjee, S.; Tripathi, A.; Despande, U. P.; Shripathi, T. Surface modification of polycarbonate by plasma treatment. J. Phys.: Conf. Ser. 2010, 208, 012108.

[29]

Lannon, J. M. Jr.; Meng, Q. R. Analysis of polycarbonate (PC) by XPS. Surf. Sci. Spectra 1999, 6, 75–78.

[30]

Adolphi, B.; Berger, O.; Fischer, W. J. Angle-resolved XPS measurements on copper phthalocyanine thin films. Appl. Surf. Sci. 2001, 179, 102–108.

[31]

Jung, G.; Ottnad, M.; Bohnenkamp, W.; Weser, U. X-ray photoelectron spectroscopy (XPS) of bovine erythrocuprein. FEBS Lett. 1972, 25, 346–348.

[32]

Mosser, C.; Mosser, A.; Romeo, M.; Petit, S.; Decarreau, A. Natural and synthetic copper phyllosilicates studied by XPS. Clays Clay Miner. 1992, 40, 593–599.

[33]

Meda, L.; Ranghino, G.; Moretti, G.; Cerofolini, G. F. XPS detection of some redox phenomena in Cu-zeolites. Surf. Interface Anal. 2002, 33, 516–521.

[34]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 2016, 10, 393–398

[35]

Shi, H.; Sun, Y. D.; Yan, R. Q.; Liu, S. L.; Zhu, L.; Liu, S.; Feng, Y. Z.; Wang, P.; He, J.; Zhou, Z. Y. et al. Magnetic semiconductor Gd-doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Lett. 2019, 19, 937–947.

[36]

Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

[37]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

[38]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[39]

Chen, X. B.; Li, P.; Wang, J.; Wan, J. W.; Yang, N. L.; Xu, B.; Tong, L. M.; Gu, L.; Du, J.; Lin, J. J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 2022, 15, 4117–4123.

[40]

Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

[41]

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

[42]

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

[43]

Yao, J. D.; Yang, G. W. An efficient solar-enabled 2D layered alloy material evaporator for seawater desalination. J. Mater. Chem. A 2018, 6, 3869–3876.

[44]

Wang, F. Y.; Li, X. Z.; Chen, Z. H.; Yu, W.; Loh, K. P.; Zhong, B.; Shi, Y. M.; Xu, Q. H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021, 405, 126676.

[45]
World Health Organization. Safe Drinking-Water from Desalination; World Health Organization, 2011.
[46]

Yang, Y.; Zhao, R. Q.; Zhang, T. F.; Zhao, K.; Xiao, P. S.; Ma, Y. F.; Ajayan, P. M.; Shi, G. Q.; Chen, Y. S. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 2018, 12, 829–835.

[47]

Li, K. R.; Stockman, M. I.; Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 2003, 91, 227402.

[48]

Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.

[49]

Chen, L. H.; Yin, M.; Xiao, C. H.; Jin, Y.; Guo, Y. Y.; Hasi, Q. M. MXene-based PCC-IS/M@TiO2 ternary integrated heterogeneous conjunctiva for efficient interfacial evaporation and photocatalytic degradation. Desalination 2024, 575, 117312.

[50]

Xue, G. B.; Liu, K.; Chen, Q.; Yang, P. H.; Li, J.; Ding, T. P.; Duan, J. J.; Qi, B.; Zhou, J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 15052–15057.

[51]

Zhang, Z.; Mu, P.; He, J. X.; Zhu, Z. Q.; Sun, H. X.; Wei, H. J.; Liang, W. D.; Li, A. Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation. Chemsuschem 2019, 12, 426–433.

[52]
Luo, S. Y.; Liu, Z. Z.; Yin, X. R.; Lin, Z. P.; Zhang, S.; Chen, J. F.; Guo, M. H. A sandwich structure Ag/MgFe2O4-deposited surface carbonized wood for integrated solar steam generation and photoreduction of Cr(VI). Small, in press, https://doi.org/10.1002/smll.202309087.
[53]

Xu, Y.; Ma, J. X.; Han, Y.; Xu, H. B.; Wang, Y.; Qi, D. P.; Wang, W. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chem. Eng. J. 2020, 384, 123379.

[54]

Li, W. G.; Tekell, M. C.; Huang, Y.; Bertelsmann, K.; Lau, M.; Fan, D. L. Synergistic high-rate solar steaming and mercury removal with MoS2/C@ polyurethane composite Sponges. Adv. Energy Mater. 2018, 8, 1802108.

[55]

Li, N.; Qiao, L. F.; He, J. T.; Wang, S. X.; Yu, L. M.; Murto, P.; Li, X. Y.; Xu, X. F. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 2021, 31, 2008681.

[56]

Yang, H. C.; Chen, Z. W.; Xie, Y. S.; Wang, J.; Elam, J. W.; Li, W. H.; Darling, S. B. Chinese ink: A powerful photothermal material for solar steam generation. Adv. Mater. Interfaces 2019, 6, 1801252.

[57]

Su, Q.; Wu, Z. F.; Huang, X. W.; Yan, J.; Tang, L. C.; Xue, H. G.; Gao, J. F. Natural lignocellulosic kapok fiber/MXene constructed hydrogel evaporators for high efficiency solar steam generation. Int. J. Biol. Macromol. 2024, 260, 129403.

[58]

Ying, P. J.; Ai, B.; Hu, W.; Geng, Y.; Li, L.; Sun, K.; Tan, S. C.; Zhang, W.; Li, M. A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy 2021, 89, 106443.

[59]

Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

[60]

Chen, Z. C.; Luo, Y. T.; Li, Q.; Chen, X. M. Microgroove-structured PDA/PEI/PPy@PI-MS photothermal aerogel with a multilevel water transport network for highly salt-rejecting solar-driven interfacial evaporation. ACS Appl. Mater. Interfaces 2021, 13, 40531–40542.

[61]

Guo, Z. Z.; Wang, G.; Ming, X.; Mei, T.; Wang, J. Y.; Li, J. H.; Qian, J. W.; Wang, X. B. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. ACS Appl. Mater. Interfaces 2018, 10, 24583–24589.

[62]

Zheng, Z. H.; Liu, H.; Wang, X. D. Double-layered hydrogels based on phase change material and pen ink for continuous and efficient solar-driven seawater desalination. Desalination 2024, 574, 117276.

[63]

Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

[64]

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

Nano Research
Pages 8513-8520
Cite this article:
Wang F, He J, Hu J, et al. Photothermal properties of Cu@polycarbonate composites with strong localized surface plasmon resonances. Nano Research, 2024, 17(9): 8513-8520. https://doi.org/10.1007/s12274-024-6805-0
Topics:

500

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 17 April 2024
Revised: 25 May 2024
Accepted: 02 June 2024
Published: 05 July 2024
© Tsinghua University Press 2024
Return