AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Skin-inspired interface modification strategy toward a structure-function integrated hybrid smart fabric system with self-powered sensing property for versatile applications

Xiang Cheng1,2( )Teng Chen2,3De Gong2( )Pengcheng Ma1Bo Chen1,4( )Jun Cai2
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Beijing U-Precision Tech Co.,Ltd., Beijing 100176, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Inspired by structures of skins, a novel interface modification strategy is proposed to fabricate a hybrid smart fabric system, which offers a paradigm to fabricate structure-function integrated hybrid smart fabric composites for the smart clothing and intelligent aerial vehicles.

Abstract

Fabric-based composites with superior mechanical properties and excellent perceptive function are highly desirable. However, it remains a huge challenge to attain structure-function integration, especially for hybrid fabric composites. Herein, a skin-inspired interface modification strategy is proposed toward this target by constructing a hybrid smart fabric system consisting of two types of smart fabrics: carbon nanotube (CNT)/MXene-modified aramid fabrics and zinc oxide nanorod (ZnO NR)-modified carbon fabrics. Based on that, flexible piezoelectric pressure sensors with skin-like hierarchical perception interfaces are fabricated, which demonstrate superb sensitivity of 2.39 V·kPa−1 and are capable of various wearable monitoring tasks. Besides, the interface-modified hybrid fabric reinforced plastics can also be fabricated, which are proven to possess 13.6% higher tensile strength, 10.1% elastic modulus. More impressively, their average energy absorption can be improved by 111.9%, accompanied with inherent damage alert capability. This offers a paradigm to fabricate structure-function integrated hybrid smart fabric composites for the smart clothing and intelligent aerial vehicles.

Electronic Supplementary Material

Download File(s)
6806_ESM.pdf (4.8 MB)

References

[1]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[2]

Montazerian, H.; Rashidi, A.; Dalili, A.; Najjaran, H.; Milani, A. S.; Hoorfar, M. Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications. Small 2019, 15, 1804991.

[3]

Ud Din, I.; Aslam, N.; Medhin, Y.; Sikandar Bathusha, M. S.; Irfan, M. S.; Umer, R.; Khan, K. A. Electromechanical behavior of self-sensing composite sandwich structures for next generation more electric aerostructures. Compos. Struct. 2022, 300, 116169.

[4]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[5]

Zheng, X. H.; Cao, W. T.; Hong, X. H.; Zou, L. H.; Liu, Z.; Wang, P.; Li, C. L. Versatile electronic textile enabled by a mixed-dimensional assembly strategy. Small 2023, 19, 2208134.

[6]

Liu, X. H.; Miao, J. L.; Fan, Q.; Zhang, W. X.; Zuo, X. W.; Tian, M. W.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Adv. Fiber Mater. 2022, 4, 361–389.

[7]

Zhao, X.; Wang, L. Y.; Tang, C. Y.; Zha, X. J.; Liu, Y.; Su, B. H.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. Smart Ti3C2T x MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano 2020, 14, 8793–8805.

[8]

Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587.

[9]

Zhu, T. X.; Ni, Y. M.; Zhao, K. Y.; Huang, J. Y.; Cheng, Y.; Ge, M. Z.; Park, C.; Lai, Y. K. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano 2022, 16, 18018–18026.

[10]

He, S. B.; Dong, W.; Guo, Y. P.; Guan, L.; Xiao, H. Y.; Liu, H. Z. Piezoelectric thin film on glass fiber fabric with structural hierarchy: An approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators. Nano Energy 2019, 59, 745–753.

[11]

Luo, S. D.; Wang, G. T.; Wang, Y.; Xu, Y.; Luo, Y. Carbon nanomaterials enabled fiber sensors: A structure-oriented strategy for highly sensitive and versatile in situ monitoring of composite curing process. Compos. Part B: Eng. 2019, 166, 645–652.

[12]

He, Q. R.; Li, X.; Zhang, H.; Briscoe, J. Nano-engineered carbon fibre-based piezoelectric smart composites for energy harvesting and self-powered sensing. Adv. Funct. Mater. 2023, 33, 2213918.

[13]

Reghat, M.; Mirabedini, A.; Tan, A. M.; Weizman, Y.; Middendorf, P.; Bjekovic, R.; Hyde, L.; Antiohos, D.; Hameed, N.; Fuss, F. K. et al. Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites. Compos. Sci. Technol. 2021, 211, 108842.

[14]

Irfan, M. S.; Khan, T.; Hussain, T.; Liao, K.; Umer, R. Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites—A review. Compos. Part A: Appl. Sci. Manuf. 2021, 141, 106236.

[15]

Song, J. H. Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Compos. Part B: Eng. 2015, 79, 61–66.

[16]

Tian, T. H.; Wei, X. D.; Elhassan, A.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. Chem. Eng. J. 2021, 417, 128114.

[17]

Raci Aydin, M.; Acar, V.; Cakir, F.; Gündoğdu, Ö.; Akbulut, H. Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites. Compos. Struct. 2022, 291, 115595.

[18]

Wang, M. L.; Pan, Z. X.; Wu, Z. Y.; Ying, Z. P. Effect of carbon/Kevlar asymmetric hybridization ratio on the low-velocity impact response of plain woven laminates. Compos. Struct. 2021, 276, 114574.

[19]

Wagih, A.; Sebaey, T. A.; Yudhanto, A.; Lubineau, G. Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites. Compos. Struct. 2020, 239, 112022.

[20]

Andrews Zachariah, S.; Satish Shenoy, B.; Dayananda Pai, K. Comprehensive analysis of in-plane tensile characteristics of thin carbon/aramid hybrid composites using experimental and RVE-based numerical study. Compos. Struct. 2021, 271, 114160.

[21]

Tian, J.; Xu, T.; An, L. Z.; Wang, S.; Tan, Y. F.; Chen, G. X. Study on behavior and mechanism of low-velocity impact and post-impact flexural properties of carbon-aramid/epoxy resin laminated composites. Compos. Struct. 2022, 300, 116166.

[22]

Cheng, Z.; Liu, Y.; Meng, C. B.; Dai, Y.; Luo, L. B.; Liu, X. Y. Constructing a weaving structure for aramid fiber by carbon nanotube-based network to simultaneously improve composites interfacial properties and compressive properties. Compos. Sci. Technol. 2019, 182, 107721.

[23]

Yin, L. J.; Zhang, B.; Tian, M.; Ning, N. Y.; Zhang, L. Q.; Wang, W. C. Surface construction of ANF/CNT onto aramid fibers to enhance interfacial adhesion and provide real-time monitoring of deformation. Compos. Sci. Technol. 2022, 223, 109336.

[24]

Gangineni, P. K.; Yandrapu, S.; Ghosh, S. K.; Anand, A.; Prusty, R. K.; Ray, B. C. Mechanical behavior of graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups. Compos. Part A: Appl. Sci. Manuf. 2019, 122, 36–44.

[25]

Hung, P. Y.; Lau, K. T.; Qiao, K.; Fox, B.; Hameed, N. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature. Compos. Part A: Appl. Sci. Manuf. 2019, 120, 56–63.

[26]

Ding, R. N.; Sun, Y.; Lee, J.; Nam, J. D.; Suhr, J. Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Compos. Part B: Eng. 2021, 207, 108580.

[27]

Zhou, Z. P.; Zheng, N.; Sun, W. F. Self-interlocked MXene/polyvinyl alcohol aerogel network to enhance interlaminar fracture toughness of carbon fibre/epoxy composites. Carbon 2023, 201, 60–70.

[28]

Sun, Z. L.; Zheng, B. P.; Chen, C. Y.; Dong, Z. J.; Ma, P. B. Synergistically enhancing weavability and interface behavior by applying PDMS/MXene on carbon fiber surface through ultrasound assistance. Compos. Part B: Eng. 2023, 267, 111071.

[29]

Hu, Y.; Pang, S. J.; Li, J. L.; Jiang, J. J.; Papageorgiou, D. G. Enhanced interfacial properties of hierarchical MXene/CF composites via low content electrophoretic deposition. Compos. Part B: Eng. 2022, 237, 109871.

[30]

Hu, Y.; Pang, S. J.; Yang, G. Y.; Yao, X. M.; Li, C. B.; Jiang, J. J.; Li, Y. J. MXene modified carbon fiber composites with improved mechanical properties based on electrophoretic deposition. Mater. Res. Bull. 2022, 150, 111761.

[31]

Zhou, J. Y.; Zhang, J. S.; Sang, M.; Liu, S.; Yuan, F.; Wang, S.; Sun, S. S.; Gong, X. L. Advanced functional Kevlar composite with excellent mechanical properties for thermal management and intelligent safeguarding. Chem. Eng. J. 2022, 428, 131878.

[32]

Tan, Y. S.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. X. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 14, 3969–3976.

[33]

Du, Y. Z.; Zhao, F.; Liu, L.; Gao, Y. Z.; Xing, L. X.; Li, Q.; Fu, C. K.; Zhong, Z. X.; Zhang, X. F. Improvement of bond strength between ZnO nanorods and carbon fibers using magnetron sputtered ZnO films as the interphase. CrystEngComm 2017, 19, 868–875.

[34]

Li, X. H.; Lin, Z. H.; Cheng, G.; Wen, X. N.; Liu, Y.; Niu, S. M.; Wang, Z. L. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 2014, 8, 10674–10681

[35]

Cheng, X.; Cai, J.; Liu, P.; Chen, T.; Chen, B.; Gong, D. Multifunctional flexible MXene/AgNW composite thin film with ultrahigh conductivity enabled by a sandwich-structured assembly strategy. Small 2024, 20, 2304327.

[36]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644.

[37]

Chen, T.; Cai, J.; Cheng, X.; Cui, S. M.; Zhang, D. Y.; Gong, D. Bio-inspired flexible versatile textiles for excellent absorption-dominated electromagnetic interference shielding, thermal management, and strain sensing. Chem. Eng. J. 2023, 477, 147116.

[38]

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

[39]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[40]

Zhao, X. F.; Hang, C. Z.; Lu, H. L.; Xu, K.; Zhang, H.; Yang, F.; Ma, R. G.; Wang, J. C.; Zhang, D. W. A skin-like sensor for intelligent Braille recognition. Nano Energy 2020, 68, 104346.

[41]

Meng, X. H.; Li, J.; Cui, H.; Ye, L.; Zhang, C.; Li, Y. L. Loading rate effect of the interfacial tensile failure behavior in carbon fiber-epoxy composites toughened with ZnO nanowires. Compos. Part B: Eng. 2021, 212, 108676.

[42]

Xu, Q.; Wen, J.; Qin, Y. Development and outlook of high output piezoelectric nanogenerators. Nano Energy 2021, 86, 106080.

[43]

Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y. S.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086–3090.

[44]

Ha, M.; Lim, S.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 2015, 25, 2841–2849.

[45]

Jeon, S. B.; Park, S. J.; Kim, W. G.; Tcho, I. W.; Jin, I. K.; Han, J. K.; Kim, D.; Choi, Y. K. Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 2018, 53, 596–603.

Nano Research
Pages 8200-8208
Cite this article:
Cheng X, Chen T, Gong D, et al. Skin-inspired interface modification strategy toward a structure-function integrated hybrid smart fabric system with self-powered sensing property for versatile applications. Nano Research, 2024, 17(9): 8200-8208. https://doi.org/10.1007/s12274-024-6806-z
Topics:

526

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 April 2024
Revised: 25 May 2024
Accepted: 04 June 2024
Published: 04 July 2024
© Tsinghua University Press 2024
Return