AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Materials advancements for the safety and patency of implantable cardiovascular devices

Zulmari Silva Pedraza1,2Bo Liu2Xudong Wang1( )
Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, USA
Departments of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
Show Author Information

Graphical Abstract

This article reviews and discusses three critical body responses to cardiovascular implants, and the representative materials approaches used to address these challenges.

Abstract

Implantable cardiovascular devices have revolutionized the management of cardiovascular diseases, significantly enhancing patients’ quality of life. With the increasing demand of cardiac implantable electronic devices, the imperative for novel device development is evident. This review article first elaborates the mechanisms underlying foreign body response and infection, elucidating the complex interplay between implanted constructs and host tissues. The discussion then focuses on current advancements in materials science and engineering aimed at mitigating these challenges. Material innovations, such as drug-eluting materials, surface modifications, and biomimetic materials, are explored as strategies to modulate these responses and to prevent fibrotic or thrombotic complications and infection. Finally, future directions in materials development for implantable cardiovascular devices are introduced. By addressing safety and patency concerns through innovative material strategies, this article aims to guide the research and development of advanced materials for both current and future cardiovascular implantable devices, ultimately improving patient outcomes and advancing cardiovascular disease treatment.

References

[1]

Akinyele, B.; Marine, J. E.; Love, C.; Crawford, T. C.; Chrispin, J.; Vlay, S. C.; Spragg, D. D.; Eagle, K. A.; Berger, R. D.; Calkins, H. et al. Unregulated online sales of cardiac implantable electronic devices in the united states: A six-month assessment. Heart Rhythm O2 2020, 1, 235–238.

[2]

Ferrick, A. M.; Raj, S. R.; Deneke, T.; Kojodjojo, P.; Lopez-Cabanillas, N.; Abe, H.; Boveda, S.; Chew, D. S.; Choi, J. I.; Dagres, N. et al. 2023 HRS/EHRA/APHRS/LAHRS expert consensus statement on practical management of the remote device clinic. Heart Rhythm 2023, 20, e92–e144.

[3]

Lim, W. Y.; Prabhu, S.; Schilling, R. J. Implantable cardiac electronic devices in the elderly population. Arrhythm. Electrophysiol. Rev. 2019, 8, 143–146.

[4]

Gupta, N.; Kiley, M. L.; Anthony, F.; Young, C.; Brar, S.; Kwaku, K. Multi-center, community-based cardiac implantable electronic devices registry: Population, device utilization, and outcomes. J. Am. Heart Assoc. 2016, 5, e002798.

[5]

Adhami, M.; Martin, N. K.; Maguire, C.; Courtenay, A. J.; Donnelly, R. F.; Domínguez-Robles, J.; Larrañeta, E. Drug loaded implantable devices to treat cardiovascular disease. Expert Opin. Drug Deliv. 2023, 20, 507–522.

[6]

Gargiulo, G.; Sannino, A.; Capodanno, D.; Barbanti, M.; Buccheri, S.; Perrino, C.; Capranzano, P.; Indolfi, C.; Trimarco, B.; Tamburino, C. et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement: A systematic review and meta-analysis. Ann. Intern. Med. 2016, 165, 334–344.

[7]

Laskey, W.; Awad, K.; Lum, J.; Skodacek, K.; Zimmerman, B.; Selzman, K.; Zuckerman, B. An analysis of implantable cardiac device reliability. The case for improved postmarketing risk assessment and surveillance. Am. J. Ther. 2012, 19, 248–254.

[8]

Chen, K.; Ren, J. Y.; Chen, C. Y.; Xu, W.; Zhang, S. Safety and effectiveness evaluation of flexible electronic materials for next generation wearable and implantable medical devices. Nano Today 2020, 35, 100939.

[9]

Zhao, X.; Zhou, Y. H.; Song, Y.; Xu, J.; Li, J.; Tat, T.; Chen, G. R.; Li, S.; Chen, J. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 2024, 23, 703–710.

[10]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[11]

Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100.

[12]

Dong, J. L.; Wang, W. Z.; Zhou, W.; Zhang, S. M.; Li, M.; Li, N.; Pan, G. Q.; Zhang, X. Z.; Bai, J. X.; Zhu, C. Immunomodulatory biomaterials for implant-associated infections: From conventional to advanced therapeutic strategies. Biomater. Res. 2022, 26, 72.

[13]
Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Elsevier: Amsterdam, 2013.
[14]

Gorbet, M. B.; Sefton, M. V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703.

[15]

Li, R. H.; Feng, D. D.; Han, S. Y.; Zhai, X. Y.; Yu, X. M.; Fu, Y. Y.; Jin, F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions. Mater. Today Bio 2023, 22, 100783.

[16]

Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.

[17]

Noskovicova, N.; Hinz, B.; Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 2021, 10, 1794.

[18]

Weigert, R. Implanted biomaterials: Dissecting fibrosis. Nat. Biomed. Eng. 2017, 1, 0016.

[19]

Jones, K. Fibrotic response to biomaterials and all associated sequence of fibrosis. In Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection; Badylak, S. F., Ed.; Academic Press: Amsterdam, 2015; pp 189–237.

[20]
Alhajj, M.; Bansal, P.; Goyal, A. Physiology, Granulation Tissue; StatPearls Publishing: Treasure Island, FL, USA, 2020.
[21]

Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009, 30, 1482–1491.

[22]

Kemp, W. L.; Burns, D. K.; Brown, T. G. Inflammation and repair. In Pathology: The Big Picture; Kemp, W. L.; Burns, D. K.; Brown, T. G., Eds.; McGraw Hill: New York, 2008; pp 13–22.

[23]
Damjanov, I. Inflammation and repair. In Pathology Secrets; 3rd ed. Damjanov, I., Ed.; Mosby: Philadelphia, 2009; pp 19–37.
[24]

Häkkinen, L.; Larjava, H.; Koivisto, L. Granulation tissue formation and remodeling. Endod. Top. 2011, 24, 94–129.

[25]

Creager, M. D.; Choi, J.; Hutcheson, J. D.; Aikawa, E. Immunohistochemistry. Compr. Biomater. II 2017, 3, 387–405.

[26]

Joy, P. S.; Kumar, G.; Poole, J. E.; London, B.; Olshansky, B. Cardiac implantable electronic device infections: Who is at greatest risk. Heart Rhythm 2017, 14, 839–845.

[27]

Inglis, S. S.; Suh, G. A.; Razonable, R. R.; Schettle, S. D.; Spencer, P. J.; Villavicencio, M. A.; Rosenbaum, A. N. Infections in patients with left ventricular assist devices: Current state and future perspectives. ASAIO J. 2023, 69, 633–641.

[28]

Kandi, V.; Vadakedath, S. Implant-associated infections: A review of the safety of cardiac implants. Cureus 2020, 12, e12267.

[29]

Sohail, M. R.; Eby, E. L.; Ryan, M. P.; Gunnarsson, C.; Wright, L. A.; Greenspon, A. J. Incidence, treatment intensity, and incremental annual expenditures for patients experiencing a cardiac implantable electronic device infection: Evidence from a large US payer database 1-year post implantation. Circ. Arrhythm. Electrophysiol. 2016, 9, e003929.

[30]

Han, H. C.; Hawkins, N. M.; Pearman, C. M.; Birnie, D. H.; Krahn, A. D. Epidemiology of cardiac implantable electronic device infections: Incidence and risk factors. Europace 2021, 23, iv3–iv10.

[31]

Gharacholou, S. M.; Dworak, M.; Dababneh, A. S.; Varatharaj Palraj, R.; Roskos, M. C.; Chapman, S. C. Acute infection of Viabahn stent graft in the popliteal artery. J. Vasc. Surg. Cases. Innov. Tech. 2017, 3, 69–73.

[32]

Koval, C. E.; Stosor, V. Ventricular assist device-related infections and solid organ transplantation-guidelines from the American society of transplantation infectious diseases community of practice. Clin. Transplant. 2019, 33, e13552.

[33]

Roy, S.; Santra, S.; Das, A.; Dixith, S.; Sinha, M.; Ghatak, S.; Ghosh, N.; Banerjee, P.; Khanna, S.; Mathew-Steiner, S. et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann. Surg. 2020, 271, 1174–1185.

[34]

Tang, L. P.; Eaton, J. W. Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 1995, 103, 466–471.

[35]

Darouiche, R. O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422–1429.

[36]

Anderson, J. M.; Jiang, S. R. Implications of the acute and chronic inflammatory response and the foreign body reaction to the immune response of implanted biomaterials. In The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of An Implant; Corradetti, B., Ed.; Springer: Cham, 2017; pp 15–36.

[37]
Senst, B.; Goyal, A.; Basit, H.; Borger, J. Drug Eluting Stent (DES) Compounds [Online]. StatPearls Publishing: Treasure Island, 2023. https://www.ncbi.nlm.nih.gov/books/NBK537349/ (accessed Apr 10, 2024).
[38]

Abizaid, A. Sirolimus-eluting coronary stents: A review. Vasc. Health Risk Manag. 2007, 3, 191–201.

[39]

Levin, A. D.; Jonas, M.; Hwang, C. W.; Edelman, E. R. Local and systemic drug competition in drug-eluting stent tissue deposition properties. J. Control. Release 2005, 109, 236–243.

[40]

Wessely, R.; Schömig, A.; Kastrati, A. Sirolimus and paclitaxel on polymer-based drug-eluting stents: Similar but different. J. Am. Coll. Cardiol. 2006, 47, 708–714.

[41]

Cole, O. J.; Shehata, M.; Rigg, K. M. Effect of SDZ RAD on transplant arteriosclerosis in the rat aortic model. Transplant. Proc. 1998, 30, 2200–2203.

[42]

Baetta, R.; Granata, A.; Canavesi, M.; Ferri, N.; Arnaboldi, L.; Bellosta, S.; Pfister, P.; Corsini, A. Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits. J. Pharmacol. Exp. Ther. 2009, 328, 419–425.

[43]

Otsuka, F.; Vorpahl, M.; Nakano, M.; Foerst, J.; Newell, J. B.; Sakakura, K.; Kutys, R.; Ladich, E.; Finn, A. V.; Kolodgie, F. D. et al. Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus- and paclitaxel-eluting stents in humans. Circulation 2014, 129, 211–223.

[44]

Mori, H.; Jinnouchi, H.; Diljon, C.; Torii, S.; Sakamoto, A.; Kolodgie, F. D.; Virmani, R.; Finn, A. V. A new category stent with novel polyphosphazene surface modification. Future Cardiol. 2018, 14, 225–235.

[45]

Maillard, L.; de Labriolle, A.; Brasselet, C.; Faurie, B.; Durel, N.; de Poli, F.; Bosle, S.; Madiot, H.; Berland, J.; Belle, L. Evaluation of the safety and efficacy of the cobra PzF NanoCoated coronary stent in routine, consecutive, prospective, and high-risk patients: The e-Cobra study. Catheter. Cardiovasc. Interv. 2021, 98, 45–54.

[46]

Koppara, T.; Sakakura, K.; Pacheco, E.; Cheng, Q.; Zhao, X. Q.; Acampado, E.; Finn, A. V.; Barakat, M.; Maillard, L.; Ren, J. et al. Preclinical evaluation of a novel polyphosphazene surface modified stent. Int. J. Cardiol. 2016, 222, 217–225.

[47]

de Guzman, R. C.; Meer, A. S.; Mathews, A. A.; Israel, A. R.; Moses, M. T.; Sams, C. M.; Deegan, D. B. Reduced fibrous capsule elastic fibers from biologic ECM-enveloped CIEDs in minipigs, supported with a novel compression mechanics model. Bio-Med. Mater. Eng. 2023, 34, 289–304.

[48]

Norton, L. W.; Koschwanez, H. E.; Wisniewski, N. A.; Klitzman, B.; Reichert, W. M. Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J. Biomed. Mater. Res. A 2007, 81A, 858–869.

[49]

Rocker, A. J.; Lee, D. J.; Shandas, R.; Park, D. Injectable polymeric delivery system for spatiotemporal and sequential release of therapeutic proteins to promote therapeutic angiogenesis and reduce inflammation. ACS Biomater. Sci. Eng. 2020, 6, 1217–1227.

[50]

Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973.

[51]

Li, M. X.; Wei, Q. Q.; Mo, H. L.; Ren, Y.; Zhang, W.; Lu, H. J.; Joung, Y. K. Correction: Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater. Res. 2023, 27, 91.

[52]

Tan, R. P.; Chan, A. H. P.; Wei, S.; Santos, M.; Lee, B. S. L.; Filipe, E. C.; Akhavan, B.; Bilek, M. M.; Ng, M. K. C.; Xiao, Y. et al. Bioactive materials facilitating targeted local modulation of inflammation. JACC Basic Transl. Sci. 2019, 4, 56–71.

[53]

Bilek, M. M. M. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays. Appl. Surf. Sci. 2014, 310, 3–10.

[54]

Wen, X.; Almousa, R.; Na, S.; Anderson, G. G.; Xie, D. Polyurethane coated with polyvinylpyrrolidones via triazole links for enhanced surface fouling resistance. Biosurf. Biotribol. 2021, 7, 219–227.

[55]

Roy, R. K.; Lee, K. R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. B: Appl. Biomater. 2007, 83B, 72–84.

[56]

Felgueiras, H. P.; Wang, L. M.; Ren, K. F.; Querido, M. M.; Jin, Q.; Barbosa, M. A.; Ji, J.; Martins, M. C. L. Octadecyl chains immobilized onto hyaluronic acid coatings by Thiol-ene “click chemistry” increase the surface antimicrobial properties and prevent platelet adhesion and activation to polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 7979–7989.

[57]

Mzyk, A.; Imbir, G.; Trembecka-Wójciga, K.; Lackner, J. M.; Plutecka, H.; Jasek-Gajda, E.; Kawałko, J.; Major, R. Rolling or two-stage aggregation of platelets on the surface of thin ceramic coatings under in vitro simulated blood flow conditions. ACS Biomater. Sci. Eng. 2020, 6, 898–911.

[58]

Pesode, P. A.; Barve, S. B. Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process. Mater. Today Proc. 2021, 47, 5652–5662.

[59]

Hu, H.; Zhang, W.; Qiao, Y.; Jiang, X.; Liu, X.; Ding, C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012, 8, 904–915.

[60]

Thukkaram, M.; Cools, P.; Nikiforov, A.; Rigole, P.; Coenye, T.; Van Der Voort, P.; Du Laing, G.; Vercruysse, C.; Declercq, H.; Morent, R. et al. Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Appl. Surf. Sci. 2020, 500, 144235.

[61]

Zhang, X. Y.; Li, J. F.; Wang, X.; Wang, Y. Y.; Hang, R. Q.; Huang, X. B.; Tang, B.; Chu, P. K. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater. Sci. Eng. C 2018, 82, 110–120.

[62]

Mancino, C.; Hendrickson, T.; Whitney, L. V.; Paradiso, F.; Abasi, S.; Tasciotti, E.; Taraballi, F.; Guiseppi-Elie, A. Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomed.: Nanotechnol. Biol. Med. 2022, 44, 102567.

[63]

Dolan, E. B.; Varela, C. E.; Mendez, K.; Whyte, W.; Levey, R. E.; Robinson, S. T.; Maye, E.; O’Dwyer, J.; Beatty, R.; Rothman, A. et al. An actuatable soft reservoir modulates host foreign body response. Sci. Robot. 2019, 4, eaax7043.

[64]

Whyte, W.; Goswami, D.; Wang, S. X.; Fan, Y. L.; Ward, N. A.; Levey, R. E.; Beatty, R.; Robinson, S. T.; Sheppard, D.; O’Connor, R. et al. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat. Commun. 2022, 13, 4496.

[65]

Robotti, F.; Sterner, I.; Bottan, S.; Monné Rodríguez, J. M.; Pellegrini, G.; Schmidt, T.; Falk, V.; Poulikakos, D.; Ferrari, A.; Starck, C. Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials 2020, 229, 119583.

[66]

Fusco, D.; Meissner, F.; Podesser, B. K.; Marsano, A.; Grapow, M.; Eckstein, F.; Winkler, B. Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model. Front. Cardiovasc. Med. 2022, 9, 881557.

[67]

Lentz, S.; Trossmann, V. T.; Borkner, C. B.; Beyersdorfer, V.; Rottmar, M.; Scheibel, T. Structure-property relationship based on the amino acid composition of recombinant spider silk proteins for potential biomedical applications. ACS Appl. Mater. Interfaces 2022, 14, 31751–31766.

[68]

Everett, W.; Scurr, D. J.; Rammou, A.; Darbyshire, A.; Hamilton, G.; de Mel, A. A material conferring hemocompatibility. Sci. Rep. 2016, 6, 26848.

[69]

Gester, K.; Birtel, S.; Clauser, J.; Steinseifer, U.; Sonntag, S. J. Real-time visualization of platelet interaction with micro structured surfaces. Artif. Organs 2016, 40, 201–207.

[70]

Dong, X. H.; Yuan, X. Y.; Wang, L. N.; Liu, J. L.; Midgley, A. C.; Wang, Z. H.; Wang, K.; Liu, J. F.; Zhu, M. F.; Kong, D. L. Construction of a bilayered vascular graft with smooth internal surface for improved hemocompatibility and endothelial cell monolayer formation. Biomaterials 2018, 181, 1–14.

[71]

Batalov, I.; Jallerat, Q.; Kim, S.; Bliley, J.; Feinberg, A. W. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci. Rep. 2021, 11, 11502.

[72]

Ding, Y. H.; Yang, M.; Yang, Z. L.; Luo, R. F.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography. Acta Biomater. 2015, 15, 150–163.

Nano Research
Pages 8977-8989
Cite this article:
Pedraza ZS, Liu B, Wang X. Materials advancements for the safety and patency of implantable cardiovascular devices. Nano Research, 2024, 17(10): 8977-8989. https://doi.org/10.1007/s12274-024-6808-x
Topics:
Part of a topical collection:

283

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 April 2024
Revised: 01 June 2024
Accepted: 03 June 2024
Published: 06 July 2024
© Tsinghua University Press 2024
Return