AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pd/N-doped carbon dots@dendritic mesoporous silica nanospheres: A highly efficient catalyst for the hydrogenation of 4-nitrophenol

Weiruo Liu1Yanbin Zhu2Jiwei Wang2Haisong Feng3( )Yunpu Zhai1( )Wei Li2Dongyuan Zhao2
College of Chemistry, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Highly dispersed Pd nanoparticles/N-doped carbon dots were immobilized in dendritic mesoporous silica, achieving a remarkable catalytic performance for the hydrogenation of 4-nitrophenol.

Abstract

Highly dispersed Pd/N-doped carbon dots (Pd/NCDs) were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres (NMS). The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol (4-NP), achieving a turnover frequency of 1461.8 mol·molPd−1·h−1, with the conversion rate remaining above 80% after 11 cycles. Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles, leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates, which is a key factor contributing to the catalytic performance. This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.

Electronic Supplementary Material

Download File(s)
6809_ESM.pdf (907.7 KB)

References

[1]

Murata, K.; Kosuge, D.; Ohyama, J.; Mahara, Y.; Yamamoto, Y.; Arai, S.; Satsuma, A. Exploiting metal–support interactions to tune the redox properties of supported Pd catalysts for methane combustion. ACS Catal. 2020, 10, 1381–1387.

[2]

Yang, Y. P.; Miao, C. L.; Wang, R. Y.; Zhang, R. X.; Li, X. Y.; Wang, J. G.; Wang, X.; Yao, J. N. Advances in morphology-controlled alumina and its supported Pd catalysts: Synthesis and applications. Chem. Soc. Rev. 2024, 53, 5014–5053.

[3]

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A Heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707.

[4]

Wu, D.; Baaziz, W.; Gu, B.; Marinova, M.; Hernández, W. Y.; Zhou, W. J.; Vovk, E. I.; Ersen, O.; Safonova, O. V.; Addad, A. et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nat. Catal. 2021, 4, 595–606.

[5]

Chen, J. J.; Zhong, J. W.; Wu, Y.; Hu, W.; Qu, P. F.; Xiao, X.; Zhang, G. C.; Liu, X.; Jiao, Y.; Zhong, L. et al. Particle size effects in stoichiometric methane combustion: Structure–activity relationship of Pd catalyst supported on gamma-alumina. ACS Catal. 2020, 10, 10339–10349.

[6]

Wu, Q. Q.; Yan, J. R.; Jiang, M. X.; Dai, Q. G.; Wu, J. Y.; Ha, M. N.; Ke, Q. P.; Wang, X. Y.; Zhan, W. C. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl. Catal. B: Environ. 2021, 286, 119949.

[7]

Zeng, Y. Y.; Qiao, L. Y.; Zong, S. S.; Guo, R.; Cheng, J. K.; Cao, X. Y.; Zhou, Z. F.; Fan, M. H.; Yao, Y. G. Dispersed Pd/alumina catalyst with finite iodine entry for boosted CO purification and dimethyl carbonate synthesis. Chem. Eng. J. 2023, 466, 143348.

[8]

Yu, W.; Lin, H. W.; Tan, C. S. Direct synthesis of Pd incorporated in mesoporous silica for solvent-free selective hydrogenation of chloronitrobenzenes. Chem. Eng. J. 2017, 325, 124–133.

[9]
Cahyanto, H.; Chen, X. M.; Lam, F. L. Y.; Iadrat, P.; Wattanakit, C.; Kidkhunthod, P.; Singh, V.; Brooker, S.; Pang, S. S.; Choi, J. et al. Effective prevention of palladium metal particles sintering by histidine stabilization on silica catalyst support. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402983.
[10]

Sakai, S.; Hasegawa, S.; Ding, S. M.; Osuga, R.; Nakajima, K.; Tanaka, S.; Chun, W. J.; Motokura, K. Low-temperature N-allylation of allylic alcohols via synergistic Pd/Cu catalysis: A silica-supported dual-metal-complex strategy. ACS Catal. 2024, 14, 4835–4846.

[11]

Zhou, J. S.; Lou, Z. M.; Xu, J.; Zhou, X. X.; Yang, K. L.; Gao, X. Y.; Zhang, Y. L.; Xu, X. H. Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chem. Eng. J. 2019, 358, 1176–1185.

[12]

Rao, R. G.; Blume, R.; Greiner, M. T.; Liu, P.; Hansen, T. W.; Dreyer, K. S.; Hibbitts, D. D.; Tessonnier, J. P. Oxygen-doped carbon supports modulate the hydrogenation activity of palladium nanoparticles through electronic metal–support interactions. ACS Catal. 2022, 12, 7344–7356.

[13]

Wang, W. L.; Yang, G. X.; Wang, Q.; Cao, Y. H.; Wang, H. J.; Yu, H. Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal-carbon interaction for phenol hydrogenation. Chem. Eng. J. 2022, 436, 131758.

[14]

Ma, Y. Z.; Zhang, H. J.; Lin, R. F.; Ai, Y.; Lan, K.; Duan, L. L.; Chen, W. Y.; Duan, X. Z.; Ma, B.; Wang, C. Y. et al. Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers. Nat. Commun. 2022, 13, 6136.

[15]

Lan, K.; Zhao, D. Y. Functional ordered mesoporous materials: Present and future. Nano Lett. 2022, 22, 3177–3179.

[16]

Fan, J. W.; Niu, X. F.; Teng, W.; Zhang, P.; Zhang, W. X.; Zhao, D. Y. Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J. Mater. Chem. A 2020, 8, 17174–17184.

[17]

Zhang, S. Q.; Qian, Y. J.; Ahn, W. S. Catalytic dehydrogenation of formic acid over palladium nanoparticles immobilized on fibrous mesoporous silica KCC-1. Chin. J. Catal. 2019, 40, 1704–1712.

[18]

Tian, M.; Long, Y.; Xu, D.; Wei, S. Y.; Dong, Z. P. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. J. Colloid Interface Sci. 2018, 521, 132–140.

[19]

Parlett, C. M. A.; Bruce, D. W.; Hondow, N. S.; Lee, A. F.; Wilson, K. Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 2011, 1, 636–640.

[20]

Yan, R.; Xu, J. X.; Zhang, Y. Y.; Wang, D.; Zhang, M. C.; Zhang, W. Q. Simultaneous Pd catalyst immobilization during synthesis of mesoporous silica. Chem. Eng. J. 2012, 200–202, 559–568

[21]

Wang, Y.; Liu, J. Y.; Wang, P.; Werth, C. J.; Strathmann, T. J. Palladium nanoparticles encapsulated in core–shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catal. 2014, 4, 3551–3559.

[22]

Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 250–254.

[23]

Zhou, C. H.; Li, S.; Chai, H.; Liu, Q.; Hu, J. S.; Liu, Z. T.; Yu, K.; Fan, F.; Zhou, W. W.; Duan, A. J. et al. Immobilizing Pd nanoparticles on amine-functionalized yolk-shell mesoporous silica nanospheres for efficient H2 production from formic acid dehydrogenation. Appl. Catal. B: Environ. Energy 2024, 346, 123750.

[24]

Gao, S. G.; Zhang, L.; Yu, H. T.; Wang, H. Q.; He, Z. W.; Huang, K. Palladium-encapsulated hollow porous carbon nanospheres as nanoreactors for highly efficient and size-selective catalysis. Carbon 2021, 175, 307–311.

[25]

Zhu, W.; Noureddine, A.; Howe, J. Y.; Guo, J. M.; Brinker, C. J. Conversion of metal-organic cage to ligand-free ultrasmall noble metal nanocluster catalysts confined within mesoporous silica nanoparticle supports. Nano Lett. 2019, 19, 1512–1519.

[26]

Doustkhah, E.; Tsunoji, N.; Mine, S.; Toyao, T.; Shimizu, K. I.; Morooka, T.; Masuda, T.; Assadi, M. H. N.; Ide, Y. Feeble single-atom Pd catalysts for H2 production from formic acid. ACS Appl. Mater. Interfaces 2024, 16, 10251–10259.

[27]

Chen, W. Y.; Qian, G.; Wan, Y.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Duan, X. Z. Mesokinetics as a tool bridging the microscopic-to-macroscopic transition to rationalize catalyst design. Acc. Chem. Res. 2022, 55, 3230–3241.

[28]

Chen, W. Y.; Fu, W. Z.; Duan, X. Z.; Chen, B. X.; Qian, G.; Si, R.; Zhou, X. G.; Yuan, W. K.; Chen, D. Taming electrons in Pt/C catalysts to boost the mesokinetics of hydrogen production. Engineering 2022, 14, 124–133.

[29]

He, Z. L.; Liu, R.; Xu, C. H.; Lai, Y. J.; Shan, W. Y.; Liu, J. F. Black phosphorus hybridizing produces electron-deficient active sites on palladium nanoparticles for catalysis. Appl. Catal. B: Environ. 2021, 285, 119775.

[30]

Wu, H.; Lu, S. Y.; Yang, B. Carbon-dot-enhanced electrocatalytic hydrogen evolution. Acc. Mater. Res. 2022, 3, 319–330.

[31]

Yu, Z. H.; Li, F.; Xiang, Q. J. Carbon dots-based nanocomposites for heterogeneous photocatalysis. J. Mater. Sci. Technol. 2024, 175, 244–257.

[32]

Zhai, Y. P.; Zhang, B. W.; Shi, R.; Zhang, S. Y.; Liu, Y.; Wang, B. Y.; Zhang, K.; Waterhouse, G. I. N.; Zhang, T. R.; Lu, S. Y. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv. Energy Mater. 2022, 12, 2103426.

[33]

Xu, Q. Q.; Cai, H. W.; Li, W. J.; Wu, M.; Wu, Y. Z.; Gong, X. Carbon dot/inorganic nanomaterial composites. J. Mater. Chem. A 2022, 10, 14709–14731.

[34]

Miao, S. H.; Liang, K.; Zhu, J. J.; Yang, B.; Zhao, D. Y.; Kong, B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020, 33, 100879.

[35]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[36]

Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.

[37]

Yang, Y. N.; Bernardi, S.; Song, H.; Zhang, J.; Yu, M. H.; Reid, J. C.; Strounina, E.; Searles, D. J.; Yu, C. Z. Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: Understanding the composition gradient. Chem. Mater. 2016, 28, 704–707.

[38]

Lee, Y. R.; Zhang, S. Q.; Yu, K.; Choi, J.; Ahn, W. S. Poly(amidoamine) dendrimer immobilized on mesoporous silica foam (MSF) and fibrous nano-silica KCC-1 for Gd3+ adsorption in water. Chem. Eng. J. 2019, 378, 122133.

[39]

Li, S.; Zhou, C. H.; Hu, J. S.; Duan, A. J.; Xu, C. M.; Wang, X. L. PdIr nanoparticles on NH2-functionalized dendritic mesoporous silica nanospheres for efficient dehydrogenation of formic acid. J. Catal. 2023, 426, 153–161.

[40]

Zhang, M. L.; Zhang, W. R.; Fan, X.; Ma, Y. R.; Huang, H.; Wang, X. T.; Liu, Y.; Lin, H. P.; Li, Y. Y.; Tian, H. et al. Chiral carbon dots derived from serine with well-defined structure and enantioselective catalytic activity. Nano Lett. 2022, 22, 7203–7211.

[41]

Ru, Y.; Sui, L. Z.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

[42]

Wang, Y. X.; Liu, Y.; Hao, X. T.; Zhou, X. P.; Peng, H. Y.; Shen, Z. H.; Smalyukh, I. I.; Xie, X. L.; Yang, B. Supramolecular liquid crystal carbon dots for solvent-free direct ink writing. Adv. Mater. 2023, 35, 2303680.

[43]

Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.

[44]

Zhang, S. Y.; Gao, M. J.; Zhai, Y. P.; Wen, J. Q.; Yu, J. K.; He, T. W.; Kang, Z. H.; Lu, S. Y. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674.

[45]

Qi, X. M.; Peng, J. W.; Zhang, X. F.; Cai, H. X.; Huang, Y.; Qiao, J. Z.; Guo, Y. C.; Guo, X.; Wu, Y. Q. Computer chip-inspired design of nanocellulose/carbon dots hydrogel as superior intensifier of nano-sized photocatalyst for effective Cr(VI) removal. J. Hazard. Mater. 2023, 446, 130689.

[46]

Li, Q. S.; Lu, H.; Wang, X. L.; Hong, Z. Q.; Fu, Z.; Liu, X. X.; Zhou, J. T. Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation. Chem. Eng. J. 2022, 443, 136473.

[47]

Qi, M. Y.; Zhang, Y. X.; Li, Q. N.; Wu, L.; Zhou, B. H.; Wang, Z. P.; Huang, Z. H.; Wang, M. X. Experimental and theoretical insights into metal-free catalytic reduction of nitrophenols over porous nitrogen-doped reduced graphene oxide. Chem. Eng. J. 2023, 474, 145823.

[48]

Ren, Y. Q.; Chen, Y.; Zhao, Q. F.; Xu, Z. M.; Wu, M. J.; Bian, Z. F. Engineering palladium nanocrystals boosting C–C coupling by photocatalysis. Appl. Catal. B: Environ. 2023, 324, 122264.

[49]

Zhou, L.; He, S. R.; Xu, X. H.; Li, G. W.; Jia, C. C. Potassium titanate supported atomically dispersed palladium for catalytic oxidation. Adv. Sci. 2023, 10, 2204674.

[50]

Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc. 2010, 132, 8466–8473.

[51]

Bogireddy, N. K. R.; Sahare, P.; Pal, U.; Méndez, S. F. O.; Gomez, L. M.; Agarwal, V. Platinum nanoparticle-assembled porous biogenic silica 3D hybrid structures with outstanding 4-nitrophenol degradation performance. Chem. Eng. J. 2020, 388, 124237.

[52]

Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.

[53]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[54]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[55]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[56]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[57]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[58]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[59]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

Nano Research
Pages 7967-7974
Cite this article:
Liu W, Zhu Y, Wang J, et al. Pd/N-doped carbon dots@dendritic mesoporous silica nanospheres: A highly efficient catalyst for the hydrogenation of 4-nitrophenol. Nano Research, 2024, 17(9): 7967-7974. https://doi.org/10.1007/s12274-024-6809-9
Topics:

363

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 March 2024
Revised: 13 May 2024
Accepted: 06 June 2024
Published: 12 July 2024
© Tsinghua University Press 2024
Return