AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly transparent anti-reflection coating enhances the underwater efficiency and stability of perovskite solar modules

Feng Qian1Shihao Yuan1Ting Zhang1( )Lei Wang1Xiaobo Li1Hualin Zheng1Qien Xu1Zhi David Chen2Shibin Li1( )
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Department of Electrical and Computer Engineering and Center for Nanoscale Science and Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
Show Author Information

Graphical Abstract

Here, a remarkable conversion efficiency of 14.7% was achieved underwater after encapsulating the solar modules with 1H,1H,2H,2H-heptadecafluorodecyl acrylate (HFDA) coatings, which is highly transparent and anti-reflective. Thus, an obviously improved underwater stability and lead leakage were observed.

Abstract

Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties; however, their underwater performance and stability still hinder their practical use. In this research, a 1H,1H,2H,2H-heptadecafluorodecyl acrylate (HFDA) anti-reflection coating (ARC) was introduced as a high-transparent material for encapsulating perovskite solar modules (PSMs). Optical characterization results revealed that HFDA can effectively reduce reflection of light below 800 nm, aiding in the absorption of light within this wavelength range by underwater solar cells. Thus, a remarkable efficiency of 14.65% was achieved even at a water depth of 50 cm. And, the concentration of Pb2+ for HFDA-encapsulated film is significantly reduced from 186 to 16.5 ppb after being immersed in water for 347 h. Interestingly, the encapsulated PSMs still remained above 80% of their initial efficiency after continuous underwater illumination for 400 h. Furthermore, being exposed to air, the encapsulated PSMs maintained 94% of their original efficiency after 1000 h light illumination. This highly transparent ARC shows great potentials in enhancing the stability of perovskite devices, applicable not only to underwater cells but also extendable to land-based photovoltaic devices.

Electronic Supplementary Material

Download File(s)
6810_ESM.pdf (2.2 MB)

References

[1]

Sun, K.; Cui, W. C.; Chen, C. Review of underwater sensing technologies and applications. Sensors 2021, 21, 7849.

[2]

Röhr, J. A.; Sartor, B. E.; Lipton, J.; Taylor, A. D. A dive into underwater solar cells. Nat. Photonics 2023, 17, 747–754.

[3]

Röhr, J. A.; Lipton, J.; Kong, J.; Maclean, S. A.; Taylor, A. D. Efficiency limits of underwater solar cells. Joule 2020, 4, 840–849.

[4]

Röhr, J. A.; Sartor, B. E.; Duenow, J. N.; Qin, Z. L.; Meng, J.; Lipton, J.; Maclean, S. A.; Römer, U.; Nielsen, M. P.; Zhao, S. L. et al. Identifying optimal photovoltaic technologies for underwater applications. iScience 2022, 25, 104531.

[5]

Jenkins, P. P.; Messenger, S.; Trautz, K. M.; Maximenko, S. I.; Goldstein, D.; Scheiman, D.; Hoheisel, R.; Walters, R. J. High-bandgap solar cells for underwater photovoltaic applications. IEEE J. Photovolt. 2014, 4, 202–207.

[6]

Smith, R. C.; Baker, K. S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177–184.

[7]

Mishra, D. R.; Narumalani, S.; Rundquist, D.; Lawson, M. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 48–64.

[8]

Morel, A.; Gentili, B.; Claustre, H.; Babin, M.; Bricaud, A.; Ras, J.; Tièche, F. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 2007, 52, 217–229.

[9]

Zhang, T.; Wang, F.; Chen, H.; Qian, F.; Li, J.; Zheng, H. L.; Yuan, S. H.; Peng, X. F.; Wang, Y. F.; Huang, J. et al. Synchronized B-site alloying for high-efficiency inorganic tin-lead perovskite solar cells. Appl. Phys. Rev. 2023, 10, 041417.

[10]

Dong, H.; Ran, C. X.; Gao, W. Y.; Li, M. J.; Xia, Y. D.; Huang, W. Metal halide perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3.

[11]

Hoye, R. L. Z.; Hidalgo, J.; Jagt, R. A.; Correa‐Baena, J. P.; Fix, T.; MacManus‐Driscoll, J. L. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 2022, 12, 2100499.

[12]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[13]

Zhao, Y.; Ma, F.; Qu, Z. H.; Yu, S. Q.; Shen, T.; Deng, H. X.; Chu, X. B.; Peng, X. X.; Yuan, Y. B.; Zhang, X. W. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534.

[14]

Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 2022, 7, 2490–2514.

[15]

Kirmani, A. R.; Ostrowski, D. P.; VanSant, K. T.; Byers, T. A.; Bramante, R. C.; Heinselman, K. N.; Tong, J. H.; Stevens, B.; Nemeth, W.; Zhu, K. et al. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics. Nat. Energy 2023, 8, 191–202.

[16]

Chouhan, L.; Ghimire, S.; Subrahmanyam, C.; Miyasaka, T.; Biju, V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 2020, 49, 2869–2885.

[17]

Yuan, S. H.; Zhang, T.; Chen, H.; Ji, Y.; Hao, Y. H.; Zheng, H. L.; Wang, Y. F.; Chen, Z. D.; Chen, L.; Li, S. B. Dual-functional passivators for highly efficient and hydrophobic FA-based perovskite solar cells. Chem. Eng. J. 2022, 433, 133227.

[18]

Zhang, T.; Qian, F.; Chen, H.; Zheng, H. L.; Wang, L.; Yuan, S. H.; Wu, Y. F.; Chen, Z. D.; Li, S. B. Critical role of post-treatment induced surface reconstruction for high performance inorganic tin-lead perovskite solar cells. Chem. Eng. J. 2024, 479, 147554.

[19]

Guo, R. Q.; Bao, C. X.; Gao, F.; Tian, J. J. Double active layers constructed with halide perovskite and quantum dots for broadband photodetection. Adv. Opt. Mater. 2020, 8, 2000557.

[20]

Zhou, F.; Ran, X.; Fan, D. Y.; Lu, S. B.; Ji, W. Perovskites: Multiphoton absorption and applications. Adv. Opt. Mater. 2021, 9, 2100292.

[21]

Jiang, Y.; Qiu, L. B.; Juarez-Perez, E. J.; Ono, L. K.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Meng, L. Q.; Wang, Q. J.; Qi, Y. B. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 2019, 4, 585–593.

[22]

Chen, H. B.; Wang, H. W.; Xue, Y. P.; Ge, Q.; Du, Y. C.; Yin, J. N.; Yang, B.; Yang, S. P.; Liu, X. P.; Cai, M. L. et al. Ultra-high moisture stability perovskite films, soaking in water over 360 min. Chem. Eng. J. 2022, 450, 138028.

[23]

Wang, Q. R.; Lin, Z. H.; Su, J.; Xu, Y. M.; Guo, X.; Li, Y. C.; Zhang, M.; Zhang, J. C.; Chang, J. J.; Hao, Y. Dithiol surface treatment towards improved charge transfer dynamic and reduced lead leakage in lead halide perovskite solar cells. EcoMat 2022, 4, e12185.

[24]

Fu, Z. Y.; Xu, M.; Sheng, Y. S.; Yan, Z. B.; Meng, J.; Tong, C. H.; Li, D.; Wan, Z. N.; Ming, Y.; Mei, A. Y. et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long‐term outdoor stability. Adv. Funct. Mater. 2019, 29, 1809129.

[25]

He, J.; Wang, Q. R.; Xu, Y. M.; Guo, X.; Zhou, L.; Su, J.; Lin, Z. H.; Zhang, J. C.; Hao, Y.; Chang, J. J. Synergistic effect of surface p‐doping and passivation improves the efficiency, stability, and reduces lead leakage in all-inorganic CsPbIBr2‐based perovskite solar cells. Small 2023, 19, 2205962.

[26]

Li, X.; Zhang, F.; He, H. Y.; Berry, J. J.; Zhu, K.; Xu, T. On-device lead sequestration for perovskite solar cells. Nature 2020, 578, 555–558.

[27]

Li, X.; Zhang, F.; Wang, J. X.; Tong, J. H.; Xu, T.; Zhu, K. On-device lead-absorbing tapes for sustainable perovskite solar cells. Nat. Sustain. 2021, 4, 1038–1041.

[28]

Chen, S. S.; Deng, Y. H.; Gu, H. Y.; Xu, S.; Wang, S.; Yu, Z. H.; Blum, V.; Huang, J. S. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 2020, 5, 1003–1011.

[29]

Xiao, X.; Wang, M. X.; Chen, S. S.; Zhang, Y. H.; Gu, H. Y.; Deng, Y. H.; Yang, G.; Fei, C. B.; Chen, B.; Lin, Y. Z. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Sci. Adv. 2021, 7, eabi8249.

[30]

Cheacharoen, R.; Boyd, C. C.; Burkhard, G. F.; Leijtens, T.; Raiford, J. A.; Bush, K. A.; Bent, S. F.; McGehee, M. D. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2018, 2, 2398–2406.

[31]

Li, Z.; Wu, X.; Wu, S. F.; Gao, D. P.; Dong, H.; Huang, F. Z.; Hu, X. T.; Jen, A. K. Y.; Zhu, Z. L. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 2022, 93, 106853.

[32]

Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016, 354, 203–206.

[33]

Wang, Q. R.; Lin, Z. H.; Xu, Y. M.; Zhang, B. Y.; Guo, X.; Hu, Z. S.; Hao, Y.; Chang, J. J. Chelating resin encapsulation for reduced Pb leakage in perovskite solar cells. EcoMat 2023, 5, e12400.

[34]

Wang, Q. C.; Fu, R.; Sun, T. G.; Liu, M. R.; Sun, S. P.; Jiang, H. T.; Li, Z. N.; Zhang, Y.; Liu, D. X.; Chen, Y. et al. Continuously in-situ manufacture of perovskite quantum dots/POE encapsulation adhesive film for silicon solar cell enhancement application. Sol. Energy Mater. Sol. Cells 2023, 259, 112450.

[35]

Yang, K.; Huang, X. Y.; Huang, Y. H.; Xie, L. Y.; Jiang, P. K. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 2013, 25, 2327–2338.

[36]

Zhang, Y. L.; Liu, X.; Sun, X. R.; Huang, Y. L.; Yu, J.; Hou, T.; Shi, L.; Green, M. A.; Hao, X. J.; Zhang, M. Barrier strategy for strain-free encapsulation of perovskite solar cells. J. Phys. Chem. Lett. 2023, 14, 10754–10761.

[37]

Zou, Y. Q.; Eichhorn, J.; Zhang, J. Y.; Apfelbeck, F. A. C.; Yin, S. S.; Wolz, L.; Chen, C. C.; Sharp, I. D.; Müller-Buschbaum, P. Microstrain and crystal orientation variation within naked triple-cation mixed halide perovskites under heat, UV, and visible light exposure. ACS Energy Lett. 2024, 9, 388–399.

[38]

Liu, H.; Zhu, L.; Zhang, H.; He, X. J.; Yan, F.; Wong, K. S.; Choy, W. C. H. Realizing high-detectivity near-infrared photodetectors in tin-lead perovskites by double-sided surface-preferred distribution of multifunctional tin thiocyanate additive. ACS Energy Lett. 2022, 8, 577–589.

[39]

Zhang, T.; Wang, F.; Chen, H.; Ji, L.; Wang, Y. F.; Li, C.; Raschke, M. B.; Li, S. B. Mediator-antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett. 2020, 5, 1619–1627.

[40]

Wang, L.; Zhang, T.; Yuan, S. H.; Qian, F.; Li, X. B.; Zheng, H. L.; Huang, J.; Li, S. B. Over 19% efficiency perovskite solar modules by simultaneously suppressing cation deprotonation and iodide oxidation. ACS Appl. Mater. Interfaces 2024, 16, 4751–4762.

[41]

Hashmi, S. G.; Martineau, D.; Dar, M. I.; Myllymäki, T. T. T.; Sarikka, T.; Ulla, V.; Zakeeruddin, S. M.; Grätzel, M. High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. J. Mater. Chem. A 2017, 5, 12060–12067.

[42]

Duong, T.; Peng, J.; Walter, D.; Xiang, J.; Shen, H. P.; Chugh, D.; Lockrey, M.; Zhong, D. Y.; Li, J. T.; Weber, K. et al. Perovskite solar cells employing copper phthalocyanine hole-transport material with an efficiency over 20% and excellent thermal stability. ACS Energy Lett. 2018, 3, 2441–2448.

[43]

Enaganti, P. K.; Dwivedi, P. K.; Srivastava, A. K.; Goel, S. Study of solar irradiance and performance analysis of submerged monocrystalline and polycrystalline solar cells. Prog. Photovoltaics 2020, 28, 725–735.

[44]

Chen, Y. H.; Tan, S. Q.; Li, N. X.; Huang, B. L.; Niu, X. X.; Li, L.; Sun, M. Z.; Zhang, Y.; Zhang, X.; Zhu, C. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 2020, 4, 1961–1976.

[45]

Wang, S. Q.; Yang, T. H.; Yang, Y. G.; Du, Y. C.; Huang, W. L.; Cheng, L. W.; Li, H. J.; Wang, P. J.; Wang, Y. J.; Zhang, Y. et al. In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells. Adv. Mater. 2023, 35, 2305314.

[46]

Wang, H. X.; Yang, M.; Cai, W. S.; Zang, Z. G. Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells. Nano Lett. 2023, 23, 4479–4486.

[47]

Ann, M. H.; Kim, J.; Kim, M.; Alosaimi, G.; Kim, D.; Ha, N. Y.; Seidel, J.; Park, N.; Yun, J. S.; Kim, J. H. Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy 2020, 68, 104321.

[48]

Ma, Q. Y.; Wang, Y. S.; Liu, L. M.; Yang, P.; He, W. J.; Zhang, X.; Zheng, J. Z.; Ma, M. G.; Wan, M. X.; Yang, Y. Z. et al. One-step dual-additive passivated wide-bandgap perovskites to realize 44.72%-efficient indoor photovoltaics. Energy Environ. Sci. 2024, 17, 1637–1644.

[49]

Samantaray, M. R.; Rana, N. K.; Ghosh, D. S.; Chander, N. Underwater performance analysis of perovskite solar cells. Phys. Status Solidi. Rapid Res. Lett. 2023, 17, 2200208.

[50]

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

[51]

Shi, L.; Bucknall, M. P.; Young, T. L.; Zhang, M.; Hu, L.; Bing, J. M.; Lee, D. S.; Kim, J.; Wu, T.; Takamure, N. et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 2020, 368, eaba2412.

[52]

Zhou, J.; Liu, Z. H.; Yu, P.; Tong, G. Q.; Chen, R. J.; Ono, L. K.; Chen, R.; Wang, H. X.; Ren, F. M.; Liu, S. W. et al. Modulation of perovskite degradation with multiple-barrier for light-heat stable perovskite solar cells. Nat. Commun. 2023, 14, 6120.

Nano Research
Pages 8126-8133
Cite this article:
Qian F, Yuan S, Zhang T, et al. Highly transparent anti-reflection coating enhances the underwater efficiency and stability of perovskite solar modules. Nano Research, 2024, 17(9): 8126-8133. https://doi.org/10.1007/s12274-024-6810-3
Topics:

788

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 April 2024
Revised: 23 May 2024
Accepted: 05 June 2024
Published: 11 July 2024
© Tsinghua University Press 2024
Return