AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unveiling field-coupled nanocomputing: Leaning molecules to shape readable bits

Yuri Ardesi1( )Giuliana Beretta1Fabrizio Mo1Chiara Elfi Spano1Gianluca Piccinini1Mariagrazia Graziano2
Corso Duca degli Abruzzi, Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Corso Duca degli Abruzzi, Department of Applied Science and Technology, Politecnico di Torino, Turin 10129, Italy
Show Author Information

Graphical Abstract

This paper proposes bend-boosted molecular field-coupled nanocomputing (molFCN), which exploits waiving molecule to enhance for molFCN encoding. The technology is analysed and validated with density functional theory, demonstrating readout capabilities and compatibility with charge-based molFCN, enabling molFCN experimental validation and circuit design.

Abstract

Molecular field-coupled nanocomputing (molFCN) encodes information in the molecule charge distribution and elaborates it through electrostatic coupling. Despite the advantageous sub-nanometric size and low-power dissipation, only a few attempts have been made to validate the technology experimentally. One of the obstacles is the difficulty in measuring molecule charges to validate information encoding or integrate molFCN with complementary-metal-oxide-semiconductor (CMOS). In this work, we propose a paradigm preserving the advantages of molFCN, which exploits the position of waiving molecules to augment the information encoding. We validate the paradigm, named bend-boosted molFCN, with density functional theory using 6-(ferrocenyl)hexanethiol cations. We demonstrate that the encoded information can be electrically read by constituting a molecular junction. The paradigm is compatible with the charge-based molFCN, thus acting as a readout system. The obtained results favor the experimental assessment of the molFCN principle through scanning probe microscopy techniques and the design of molFCN-CMOS heterogeneous circuits.

Electronic Supplementary Material

Download File(s)
6811_ESM.pdf (1.9 MB)

References

[1]

Lent, C. S.; Tougaw, P. D.; Porod, W.; Bernstein, G. H. Quantum cellular automata. Nanotechnology 1993, 4, 49–57.

[2]

Lent, C. S. Bypassing the transistor paradigm. Science 2000, 288, 1597–1599.

[3]

Lent, C. S.; Isaksen, B.; Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003, 125, 1056–1063.

[4]

Lent, C. S.; Isaksen, B. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 2003, 50, 1890–1896.

[5]

Arima, V.; Iurlo, M.; Zoli, L.; Kumar, S.; Piacenza, M.; Della Sala, F.; Matino, F.; Maruccio, G.; Rinaldi, R.; Paolucci, F. et al. Toward quantum-dot cellular automata units: Thiolated-carbazole linked bisferrocenes. Nanoscale 2012, 4, 813–823.

[6]

Lu, Y. H.; Lent, C. S. A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 2008, 19, 155703.

[7]

Ardesi, Y.; Garlando, U.; Riente, F.; Beretta, G.; Piccinini, G.; Graziano, M. Taming molecular field-coupling for nanocomputing design. J. Emerg. Technol. Comput. Syst. 2023, 19, 1.

[8]

Blair, E. P.; Yost, E.; Lent, C. S. Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 2010, 9, 49–55.

[9]

Ardesi, Y.; Graziano, M.; Piccinini, G. A model for the evaluation of monostable molecule signal energy in molecular field-coupled nanocomputing. J. Low Power Electron. Appl. 2022, 12, 13.

[10]

Blair, E. P.; Corcelli, S. A.; Lent, C. S. Electric-field-driven electron-transfer in mixed-valence molecules. J. Chem. Phys. 2016, 145, 014307.

[11]

Wang, Y.; Lieberman, M. Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices. IEEE Trans. Nanotechnol. 2004, 3, 368–376.

[12]

Ardesi, Y.; Gaeta, A.; Beretta, G.; Piccinini, G.; Graziano, M. Ab initio molecular dynamics simulations of field-coupled nanocomputing molecules. J. Integr. Circuits Syst. 2021, 16, 1–8.

[13]

Verstraete, L.; Szabelski, P.; Bragança, A. M.; Hirsch, B. E.; De Feyter, S. Adaptive self-assembly in 2D nanoconfined spaces: Dealing with geometric frustration. Chem. Mater. 2019, 31, 6779–6786.

[14]

Christie, J. A.; Forrest, R. P.; Corcelli, S. A.; Wasio, N. A.; Quardokus, R. C.; Brown, R.; Kandel, S. A.; Lu, Y. H.; Lent, C. S.; Henderson, K. W. Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem., Int. Ed. 2015, 54, 15448–15451.

[15]

Ardesi, Y.; Beretta, G.; Fabiano, C.; Graziano, M.; Piccinini, G. A reconfigurable field-coupled nanocomputing paradigm on uniform molecular monolayers. In 2021 International Conference on Rebooting Computing (ICRC), Los Alamitos, CA, USA, 2021, pp 124–128.

[16]

Mallada, B.; Ondráček, M.; Lamanec, M.; Gallardo, A.; Jiménez-Martín, A.; de la Torre, B.; Hobza, P.; Jelínek, P. Visualization of π-hole in molecules by means of kelvin probe force microscopy. Nat. Commun. 2023, 14, 4954.

[17]

Gross, L.; Mohn, F.; Liljeroth, P.; Repp, J.; Giessibl, F. J.; Meyer, G. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 2009, 324, 1428–1431.

[18]

Liza, N.; Murphey, D.; Cong, P. Z.; Beggs, D. W.; Lu, Y.; Blair, E. P. Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata. Nanotechnology 2022, 33, 115201.

[19]

Ardesi, Y.; Mo, F.; Spano, C. E.; Ardia, G.; Piccinini, G.; Graziano, M. Conformation-based molecular memories for nanoscale memcomputing. In IEEE 23rd International Conference on Nanotechnology (NANO), Jeju Island, Korea, 2023, pp 694–697.

[20]

Peng, J. B.; Sokolov, S.; Hernangómez-Pérez, D.; Evers, F.; Gross, L.; Lupton, J. M.; Repp, J. Atomically resolved single-molecule triplet quenching. Science 2021, 373, 452–456.

[21]

Mishra, S.; Fatayer, S.; Fernández, S.; Kaiser, K.; Peña, D.; Gross, L. Nonbenzenoid high-spin polycyclic hydrocarbons generated by atom manipulation. ACS Nano 2022, 16, 3264–3271.

[22]

Hieulle, J.; Castro, S.; Friedrich, N.; Vegliante, A.; Lara, F. R.; Sanz, S.; Rey, D.; Corso, M.; Frederiksen, T.; Pascual, J. I. et al. On-surface synthesis and collective spin excitations of a triangulene-based nanostar. Angew. Chem., Int. Ed. 2021, 60, 25224–25229.

[23]

Mo, F.; Ardesi, Y.; Roch, M. R.; Graziano, M.; Piccinini, G. Investigation of amperometric sensing mechanism in gold-C60-gold molecular dot. IEEE Sensors J. 2022, 22, 19152–19161.

[24]

Mo, F.; Spano, C. E.; Ardesi, Y.; Roch, M. R.; Piccinini, G.; Graziano, M. Design of pyrrole-based gate-controlled molecular junctions optimized for single-molecule aflatoxin B1 detection. Sensors 2023, 23, 1687.

[25]

Ardesi, Y.; Pulimeno, A.; Graziano, M.; Riente, F.; Piccinini, G. Effectiveness of molecules for quantum cellular automata as computing devices. J. Low Power Electron. Appl. 2018, 8, 24.

[26]

Karadag, M.; Geyik, C.; Demirkol, D. O.; Ertas, F. N.; Timur, S. Modified gold surfaces by 6-(ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Mater. Sci. Eng.: C 2013, 33, 634–640.

[27]

Göver, T.; Yazıcıgil, Z. Electrochemical study of 6-(ferrocenyl)hexanethiol on gold electrode surface in non-aqueous media. Surf. Interfaces 2018, 13, 163–167.

[28]

Csaba, G.; Imre, A.; Bernstein, G. H.; Porod, W.; Metlushko, V. Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 2002, 1, 209–213.

[29]

Solomon, G. C.; Herrmann, C.; Hansen, T.; Mujica, V.; Ratner, M. A. Exploring local currents in molecular junctions. Nat. Chem. 2010, 2, 223–228.

[30]

Ardesi, Y.; Turvani, G.; Graziano, M.; Piccinini, G. SCERPA simulation of clocked molecular field-coupling nanocomputing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 558–567.

[31]
Beretta, G.; Ardesi, Y.; Piccinini, G.; Graziano, M. Vlsi-nanocomputing/scerpa: Scerpa v4.0.1. Zenodo, 2022.
[32]

Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78.

[33]

Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327.

[34]

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.

[35]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[36]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[37]

Breneman, C. M.; Wiberg, K. B. Determining atom-centered monopoles from molecular electrostatic potentials The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11, 361–373.

[38]

Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[39]

Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D. et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171.

[40]

Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Comput. 2012, 38, 245–259.

[41]

Rodriguez, J. A.; Dvorak, J.; Jirsak, T.; Liu, G.; Hrbek, J.; Aray, Y.; González, C. Coverage effects and the nature of the metal–sulfur bond in S/Au(111): High-resolution photoemission and density-functional studies. J. Am. Chem. Soc. 2003, 125, 276–285.

[42]

Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G. et al. Quantumatk: An integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2020, 32, 015901.

[43]

Smidstrup, S.; Stradi, D.; Wellendorff, J.; Khomyakov, P. A.; Vej-Hansen, U. G.; Lee, M. E.; Ghosh, T.; Jónsson, E.; Jónsson, H.; Stokbro, K. First-principles Green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B 2017, 96, 195309.

[44]

Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

[45]
Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2005.
Nano Research
Pages 8447-8454
Cite this article:
Ardesi Y, Beretta G, Mo F, et al. Unveiling field-coupled nanocomputing: Leaning molecules to shape readable bits. Nano Research, 2024, 17(9): 8447-8454. https://doi.org/10.1007/s12274-024-6811-2
Topics:

423

Views

39

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 April 2024
Revised: 24 May 2024
Accepted: 04 June 2024
Published: 12 July 2024
© The Author(s) 2024

Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return