AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Approaching high oxygen evolution reaction performance by synergetic dual-ion leaching

Hancheng Ma1Yao Ding1( )Jianqi Li1Wei Peng1Liqiang Mai2
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

The CoOOH@NiOOH with a heterojunction which is derived from the self-reconstruction pre-catalyst of Co2(OH)3Cl@NiMoO4 shows highly effective activity for oxygen evolution reaction (OER).

Abstract

Self-reconstruction of catalysts during oxygen evolution reaction (OER) is crucial for the development of energy conversion technologies. However, the relationship between the specific atomic structure of pre-catalysts and their electrocatalytic behavior after reconstruction via dual-ion leaching has not been extensively researched. In this work, we design a highly effective non-noble metal OER catalyst with heterointerface through continuous self-reconstruction of Co2(OH)3Cl@NiMoO4 as pre-catalyst by a straightforward dual-ion (i.e. MoO42− and Cl) leaching. In-situ Raman and in-situ Fourier transform infrared (FT-IR) spectroscopy have precisely identified the progressive phase transformation of the pre-catalyst during self-reconstruction, which results in a stable heterojunction of CoOOH and NiOOH (CoOOH@NiOOH). Further calculations based on density functional theory (DFT) of CoOOH@NiOOH evident that more electrons will be aggregated in the Fermi level of Co. Notably, Gibbs free energy (ΔG) for different OER steps of CoOOH@NiOOH exhibit lower energy costs of all intermediates, implying the well catalytic properties. Ultimately, the catalyst derived from dual-ion leaching displays outstanding OER performance, characterized by an overpotential of 275 mV at a current density of 10 mA·cm−2 and exceptional stability over 12 h reaction. This work successfully paves a way of finding high-performance OER catalysts based on non-noble metal through dual-ion leaching during self-reconstruction.

Electronic Supplementary Material

Download File(s)
6812_ESM.pdf (3 MB)

References

[1]

Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

[2]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[3]

Spöri, C.; Briois, P.; Nong, H. N.; Reier, T.; Billard, A.; Kühl, S.; Teschner, D.; Strasser, P. Experimental activity descriptors for iridium-based catalysts for the electrochemical oxygen evolution reaction (OER). ACS Catal. 2019, 9, 6653–6663.

[4]

Daiane Ferreira da Silva, C.; Claudel, F.; Martin, V.; Chattot, R.; Abbou, S.; Kumar, K.; Jiménez-Morales, I.; Cavaliere, S.; Jones, D.; Rozière, J. et al. Oxygen evolution reaction activity and stability benchmarks for supported and unsupported IrO x electrocatalysts. ACS Catal. 2021, 11, 4107–4116.

[5]

Ma, Z.; Zhang, Y.; Liu, S. Z.; Xu, W. Q.; Wu, L. J.; Hsieh, Y. C.; Liu, P.; Zhu, Y. M.; Sasaki, K.; Renner, J. N. et al. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core–shell nanocatalysts. J. Electroanal. Chem. 2018, 819, 296–305.

[6]

Zhu, W. J.; Yao, F.; Cheng, K. J.; Zhao, M. T.; Yang, C. J.; Dong, C. L.; Hong, Q. M.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 17995–18006.

[7]

Blasco-Ahicart, M.; Soriano-López, J.; Carbó, J. J.; Poblet, J. M.; Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 2018, 10, 24–30.

[8]

Sun, Y.; Li, R.; Chen, X. X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K. K.; Wang, L.; Zhang, Z.; Liao, Q. L. et al. A‐site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755.

[9]

Selvam, N. C. S.; Du, L. J.; Xia, B. Y.; Yoo, P. J.; You, B. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities. Adv. Funct. Mater. 2021, 31, 2008190.

[10]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[11]

Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

[12]

Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

[13]

Zeng, Y.; Zhao, M. T.; Huang, Z. H.; Zhu, W. J.; Zheng, J. X.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 2022, 12, 2201713.

[14]

Guo, D. Y.; Zeng, Z. H.; Wan, Z. X.; Li, Y.; Xi, B.; Wang, C. X. A CoN‐based OER electrocatalyst capable in neutral medium: Atomic layer deposition as rational strategy for fabrication. Adv. Funct. Mater. 2021, 31, 2101324.

[15]

Gao, X. R.; Yu, Y.; Liang, Q. R.; Pang, Y. J.; Miao, L. Q.; Liu, X. M.; Kou, Z. K.; He, J. Q.; Pennycook, S. J.; Mu, S. C. et al. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. Appl. Catal. B: Environ. 2020, 270, 118889.

[16]

Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, e2001136.

[17]

Liu, X.; Ni, K.; Wen, B.; Guo, R. T.; Niu, C. J.; Meng, J. S.; Li, Q.; Wu, P. J.; Zhu, Y. W.; Wu, X. J. et al. Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 2019, 4, 2585–2592.

[18]

Xing, Y. C.; Liu, S. L.; Liu, Y.; Xiao, X. C.; Li, Y.; Wang, Z. Y.; Hu, Y. L.; Xin, B. W.; Wang, H.; Wang, C. Construction of nickel phosphide/iron oxyhydroxide heterostructure nanoparticles for oxygen evolution. Nano Energy 2024, 123, 109402.

[19]

Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core–shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335–4342.

[20]

Duan, Y.; Lee, J. Y.; Xi, S. B.; Sun, Y. M.; Ge, J. J.; Ong, S. J. H.; Chen, Y. B.; Dou, S.; Meng, F. X.; Diao, C. Z. et al. Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 7418–7425.

[21]

Wygant, B. R.; Kawashima, K.; Mullins, C. B. Catalyst or precatalyst? The effect of oxidation on transition metal carbide, pnictide, and chalcogenide oxygen evolution catalysts. ACS Energy Lett. 2018, 3, 2956–2966.

[22]

Zhou, P.; Lv, X. S.; Tao, S. S.; Wu, J. C.; Wang, H. F.; Wei, X. X.; Wang, T. H.; Zhou, B.; Lu, Y. X.; Frauenheim, T. et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 2022, 34, 2204089.

[23]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

[24]

Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. NiMoO4@Co3O4 core–shell nanorods: In situ catalyst reconstruction toward high efficiency oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2101324.

[25]

Sun, X.; Zhang, X. X.; Li, Y. L.; Xu, Y. Z.; Su, H.; Che, W.; He, J. F.; Zhang, H.; Liu, M. H.; Zhou, W. L. et al. In situ construction of flexible V–Ni redox centers over Ni-based MOF nanosheet arrays for electrochemical water oxidation. Small Methods 2021, 5, 2100573.

[26]

Rajput, A.; Adak, M. K.; Chakraborty, B. Intrinsic lability of NiMoO4 to excel the oxygen evolution reaction. Inorg. Chem. 2022, 61, 11189–11206.

[27]

Aishwarya, K.; Maruthasalamoorthy, S.; Mani, J.; Anbalagan, G.; Nirmala, R.; Navaneethan, M.; Navamathavan, R. Structural formation of multifunctional NiMoO4 nanorods for thermoelectric applications. Phys. Chem. Chem. Phys. 2022, 24, 25620–25629.

[28]

Mansournia, M.; Rakhshan, N. Hydrothermal synthesis and tuning of size and morphology of α-Co(OH)2 and α-Co2(OH)3Cl nanostructures as precursors for nanosized Co3O4. Ceram. Int. 2017, 43, 7282–7289.

[29]

Li, H. H.; Tan, M. Y.; Huang, C.; Luo, W. P.; Yin, S. F.; Yang, W. J. Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 2021, 542, 148739.

[30]

Liu, X. H.; Qu, B. H.; Zhu, F. H.; Gong, L. Y.; Su, L. H.; Zhu, L. Q. Sonochemical synthesis of β-Co(OH)2 hexagonal nanoplates and their electrochemical capacitive behaviors. J. Alloys Compd. 2013, 560, 15–19.

[31]

Hussain, S.; Javed, M. S.; Asim, S.; Shaheen, A.; Khan, A. J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M. S.; Qiao, G. J. et al. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 2020, 46, 6406–6412.

[32]

Zhang, Z. R.; Du, W. M.; Ren, X. R.; Shen, Z. W.; Fan, X. Y.; Wei, S. H.; Wei, C. Z.; Cao, Z.; Zhang, B. Ni(OH)2-Co2(OH)3Cl bilayer nanocomposites supported by Ni foams for binder-free electrodes of high-performance hybrid supercapacitors. Appl. Surf. Sci. 2019, 469, 624–633.

[33]

Zhang, Z. W.; Yin, L. W. Mn-doped Co2(OH)3Cl xerogels with 3D interconnected mesoporous structures as lithium ion battery anodes with improved electrochemical performance. J. Mater. Chem. A 2015, 3, 17659–17668.

[34]

Qing, C.; Yang, C. X.; Chen, M. Y.; Li, W. H.; Wang, S. Y.; Tang, Y. W. Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem. Eng. J. 2018, 354, 182–190.

[35]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[36]

An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N‐NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.

[37]

Yin, Z. X.; Chen, Y. J.; Zhao, Y.; Li, C. Y.; Zhu, C. L.; Zhang, X. T. Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 22750–22758.

[38]

Chen, J. Y.; Zhao, G. Q.; Chen, Y. P.; Rui, K.; Mao, H.; Dou, S. X.; Sun, W. P. Iron‐doped nickel molybdate with enhanced oxygen evolution kinetics. Chem.—Eur. J. 2019, 25, 280–284.

[39]

Wang, Z. N.; Wang, H.; Ji, S.; Wang, X. Y.; Zhou, P. X.; Huo, S. H.; Linkov, V.; Wang, R. F. A high faraday efficiency NiMoO4 nanosheet array catalyst by adjusting the hydrophilicity for overall water splitting. Chem.—Eur. J. 2020, 26, 12067–12074.

[40]

Wang, J.; Hu, J.; Niu, S.; Li, S.; Du, Y.; Xu, P. Crystalline-amorphous Ni2P4O12/NiMoO x nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction. Small 2022, 18, 2105972.

[41]

Li, G. L.; Qiao, X. Y.; Miao, Y. Y.; Wang, T. Y.; Deng, F. Synergistic effect of N-NiMoO4/Ni heterogeneous interface with oxygen vacancies in N-NiMoO4/Ni/CNTs for superior overall water splitting. Small 2023, 19, 2207196.

[42]

Cudennec, Y.;. Lecerf, A. Étude du type structural de γ-FeO(OH)(s) et comparaison avec la structure de Cu(OH)2(s). C. R. Acad. Sci. Ser. IIC Chem. 2001, 4, 885–891.

[43]

Dürr, R. N.; Maltoni, P.; Tian, H. N.; Jousselme, B.; Hammarström, L.; Edvinsson, T. From NiMoO4 to γ-NiOOH: Detecting the active catalyst phase by time resolved in situ and operando Raman spectroscopy. ACS Nano 2021, 15, 13504–13515.

[44]

Anantharaj, S.; Karthick, K.; Kundu, S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Mater. Today Energy 2017, 6, 1–26.

[45]

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

[46]

Wang, J. R.; Fan, Y. C.; Qi, S. Y.; Li, W. F.; Zhao, M. W. Bifunctional HER/OER or OER/ORR catalytic activity of two-dimensional TM3(HITP)2 with TM = Fe–Zn. J. Phys. Chem. C 2020, 124, 9350–9359.

[47]

Zeng, L. Y.; Zhao, Z. L.; Huang, Q. Z.; Zhou, C. H.; Chen, W. X.; Wang, K.; Li, M. G.; Lin, F. X.; Luo, H.; Gu, Y. et al. Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 2023, 145, 21432–21441.

[48]

Zhou, L. X.; Shao, Y. F.; Yin, F.; Li, J.; Kang, F. Y.; Lv, R. T. Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density. Nat. Commun. 2023, 14, 7644.

[49]

Li, D. Y.; Zhang, A. D.; Feng, Z. Z.; Wang, W. T. Theoretical insights on the charge state and bifunctional OER/ORR electrocatalyst activity in 4d-transition-metal-doped g-C3N4 monolayers. ACS Appl. Mater. Interfaces 2024, 16, 5779–5791.

[50]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[51]

Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

Nano Research
Pages 7975-7983
Cite this article:
Ma H, Ding Y, Li J, et al. Approaching high oxygen evolution reaction performance by synergetic dual-ion leaching. Nano Research, 2024, 17(9): 7975-7983. https://doi.org/10.1007/s12274-024-6812-1
Topics:

315

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 April 2024
Revised: 15 May 2024
Accepted: 03 June 2024
Published: 15 July 2024
© Tsinghua University Press 2024
Return