AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D-structured carbon nanotube fibers as ultra-robust fabrics for adaptive electromagnetic shielding

Dongping Li1,2Ping Wang2Yuanyuan Li2Zhenzhong Yong1Kunjie Wu1Yan Zhang2( )Jin Wang1( )Dongmei Hu1( )
Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
College of Textile and Clothing Engineering of Soochow University, Suzhou 215021, China
Show Author Information

Graphical Abstract

This article prepared a three-dimensional (3D) carbon nanotube-based spacer fabric (CNT-SF) with tunable electromagnetic shielding properties through weaving technology. By rotating the direction of modifying CNT-SF with chemical vapor deposition (CCNT-SF), the shielding effectiveness can be changed from 33 to 87 dB. Meanwhile, the CCNT-SF shows great mechanical properties and electric heating performance.

Abstract

Wireless communication technology is indispensable in our daily lives, but it also results in serious electromagnetic radiation pollution. Hence, developing smart electromagnetic interference shielding materials with adjustable electromagnetic wave (EMW) responses holds significant promise for future electromagnetic shielding devices. In this study, we propose an electromagnetic shielding switch (ESS) characterized by tunable electromagnetic shielding performance achieved by fabricating a three-dimensional (3D) carbon nanotube-based spacer fabric (CNT-SF) and modifying CNT-SF with chemical vapor deposition (CCNT-SF). The CCNT-SF displays direction-dependent electrical conductivity by manipulating the warp and weft density, measuring 128 S/m transversely and 447 S/m vertically. This characteristic allows the CCNT-SF to transmit or shield EMW by adjusting the angle of EMW incidence through fabric rotation, resulting in anisotropic electromagnetic shielding performance (33 dB transversely and 87 dB vertically). This feature enables switchable shielding with an on/off ratio of 2.64. Furthermore, the unique 3D structure confers excellent mechanical properties on the fabric, with compressive strength reaching 120 kPa. As a flexible, lightweight, and mechanically robust ESS, the CCNT-SF holds promising prospects for mitigating the challenges of increasingly severe and intricate electromagnetic environments.

Electronic Supplementary Material

Video
6814_ESM2.avi
6814_ESM3.avi
6814_ESM4.avi
6814_ESM5.avi
Download File(s)
6814_ESM1.pdf (7.9 MB)

References

[1]

Li, Y.; Shen, B.; Pei, X. L.; Zhang, Y. G.; Yi, D.; Zhai, W. T.; Zhang, L. H.; Wei, X. C.; Zheng, W. G. Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 2016, 100, 375–385.

[2]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[3]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[4]

Yao, F. C.; Xie, W. H.; Ma, C.; Wang, D. D.; El-Bahy, Z. M.; Helal, M. H.; Liu, H.; Du, A.; Guo, Z. H.; Gu, H. B. Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos. Part B: Eng. 2022, 245, 110236.

[5]

Xie, F.; Jia, F. F.; Zhuo, L. H.; Lu, Z. Q.; Si, L. M.; Huang, J. Z.; Zhang, M. Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391.

[6]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT X (MXene). Science 2020, 369, 446–450.

[7]

Hu, X. L.; Tian, M. W.; Xu, T. L.; Sun, X. T.; Sun, B.; Sun, C. C.; Liu, X. Q.; Zhang, X. J.; Qu, L. J. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020, 14, 559–567.

[8]

Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, High-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

[9]

Zhang, X.; Tian, X. L.; Wu, N.; Zhao, S. Y.; Qin, Y. T.; Pan, F.; Yue, S. Y.; Ma, X. Y.; Qiao, J.; Xu, W. et al. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 2024, 10, eadl6498.

[10]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.

[11]

Li, S. T.; Wang, J. S.; Zhu, Z. W.; Liu, D. Y.; Li, W. C.; Sui, G. X.; Park, C. B. CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. J. Mater. Chem. A 2021, 9, 358–370.

[12]

Wu, N. N.; Zhao, B. B.; Chen, X. Y.; Hou, C. X.; Huang, M. N.; Alhadhrami, A.; Mersal, G. A. M.; Ibrahim, M. M.; Tian, J. Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1548–1556.

[13]

Li, J. T.; Zhang, G. C.; Ma, Z. L.; Fan, X. L.; Fan, X. L.; Qin, J. B.; Shi, X. T. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 2016, 129, 70–78.

[14]

Zhang, H. M.; Zhang, G. C.; Li, J. T.; Fan, X.; Jing, Z. X.; Li, J. W.; Shi, X. T. Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2017, 100, 128–138.

[15]

Zhi, X.; Zhang, H. B.; Liao, Y. F.; Hu, Q. H.; Gui, C. X.; Yu, Z. Z. Electrically conductive polycarbonate/carbon nanotube composites toughened with micron-scale voids. Carbon 2015, 82, 195–204.

[16]

Lu, D. W.; Mo, Z. C.; Liang, B. H.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 2018, 133, 457–463.

[17]

Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

[18]

Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

[19]

Deutschmann, B.; Winkler, G.; Kastner, P. Impact of electromagnetic interference on the functional safety of smart power devices for automotive applications. Elektrotech. Informationstechnik 2018, 135, 352–359.

[20]

Fu, B. Q.; Ren, P. G.; Guo, Z. Z.; Du, Y. L.; Jin, Y. L.; Sun, Z. F.; Dai, Z.; Ren, F. Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Part B: Eng. 2021, 215, 108813.

[21]

Pan, F.; Shi, Y. Y.; Yang, Y.; Guo, H. T.; Li, L. X.; Jiang, H. J.; Wang, X.; Zeng, Z. H.; Lu, W. Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 2024, 36, 2311135.

[22]

Zhao, B.; Yan, Z. K.; Du, Y. Q.; Rao, L. J.; Chen, G. Y.; Wu, Y. Y.; Yang, L. T.; Zhang, J. C.; Wu, L. M.; Zhang, D. W. et al. High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 2023, 35, 2210243.

[23]

Mathur, P.; Raman, S. Electromagnetic interference (EMI): Measurement and reduction techniques. J. Electron. Mater. 2020, 49, 2975–2998.

[24]

Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164–173.

[25]

Ullah, H.; Gopalakrishnan Nair, N.; Moore, A.; Nugent, C.; Muschamp, P.; Cuevas, M. 5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases. IEEE Access 2019, 7, 37251–37268.

[26]

Wu, S. J.; Li, H. J.; Futaba, D. N.; Chen, G. H.; Chen, C.; Zhou, K. C.; Zhang, Q. F.; Li, M.; Ye, Z. L.; Xu, M. Structural design and fabrication of multifunctional nanocarbon materials for extreme environmental applications. Adv. Mater. 2022, 34, 2201046.

[27]

Kong, Y.; Lv, Z. Q.; Li, C. W.; Men, C. L.; Wu, X. Q.; Wang, J.; Hu, D. M. Half-full filled aerogels with a 348% increment in energy absorption and a retained high electromagnetic shielding performance. Adv. Funct. Mater. 2024, 34, 2314947.

[28]

Yang, S. W.; Li, Y. Q.; Chen, L. F.; Wang, H.; Shang, L. Y.; He, P.; Dong, H.; Wang, G.; Ding, G. Q. Fabrication of carbon-based quantum dots via a "bottom-up" approach: Topology, chirality, and free radical processes in "building blocks". Small 2023, 19, 2205957.

[29]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[30]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[31]

Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

[32]

Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.

[33]

Song, W. L.; Zhang, Y. J.; Zhang, K. L.; Wang, K.; Zhang, L.; Chen, L. L.; Huang, Y. X.; Chen, M. J.; Lei, H. S.; Chen, H. S. et al. Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 2020, 7, 1902162.

[34]

Singh, A. P.; Mishra, M.; Sambyal, P.; Gupta, B. K.; Singh, B. P.; Chandra, A.; Dhawan, S. K. Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2014, 2, 3581–3593.

[35]

Joshi, A.; Datar, S. Carbon nanostructure composite for electromagnetic interference shielding. Pramana 2015, 84, 1099–1116.

[36]

Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926.

[37]

Si, Y.; Wang, X. Q.; Dou, L.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

[38]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[39]

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

[40]

Yuan, W. J.; Liu, H. T.; Wang, X. H.; Huang, L.; Yin, F. X.; Yuan, Y. Conductive MXene/melamine sponge combined with 3D printing resin base prepared as an electromagnetic interferences shielding switch. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106238.

[41]

Li, B.; Tian, H. Y.; Li, L.; Liu, W.; Liu, J. R.; Zeng, Z. H.; Wu, N. Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 2024, 34, 2314653.

[42]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[43]

Sheng, F. F.; Zhang, B.; Zhang, Y. H.; Li, Y. Y.; Cheng, R. W.; Wei, C. H.; Ning, C.; Dong, K.; Wang, Z. L. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano 2022, 16, 10958–10967.

[44]

Xiao, K. L.; Zhang, P. F.; Hu, D. M.; Huang, C. G.; Wu, X. Q. Micron-thick interlocked carbon nanotube films with excellent impact resistance via micro-ballistic impact. Small 2023, 19, 2302403.

[45]

Luo, J. J.; Wen, Y. Y.; Jia, X. Z.; Lei, X. D.; Gao, Z. F.; Jian, M. Q.; Xiao, Z. H.; Li, L. Y.; Zhang, J. W.; Li, T. et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 2023, 14, 3019.

[46]

Xiao, K. L.; Jin, W. Y.; Liu, H. B.; Huang, C. G.; Li, Y. L.; Wu, X. Q. Low-density multilayer graphdiyne film with excellent energy dissipation capability under micro-ballistic impact. Adv. Funct. Mater. 2023, 33, 2212361.

[47]

Gu, B. H. Analytical Modeling for the ballistic perforation of planar plain-woven fabric target by projectile. Compos. Part B: Eng. 2003, 34, 361–371.

[48]

Qiao, J.; Song, Q. H.; Zhang, X.; Zhao, S. Y.; Liu, J. R.; Nyström, G.; Zeng, Z. H. Enhancing interface connectivity for multifunctional magnetic carbon aerogels: An in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Adv. Sci. 2024, 11, 2400403.

[49]

Zheng, S. N.; Xu, W. L.; Liu, J. R.; Pan, F.; Zhao, S. Y.; Wang, Y. D.; Zeng, Z. H.; Wu, N. One-hour ambient-pressure-dried, scalable, stretchable MXene/polyurea aerogel enables synergistic defense against high-frequency mechanical shock and electromagnetic waves. Adv. Funct. Mater. 2024, 2402889.

[50]

Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

[51]

Zhang, M. K.; Zhang, P. J.; Wang, Q.; Li, L.; Dong, S. J.; Liu, J.; Rao, W. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 2019, 7, 10331–10337.

[52]

Luo, N. N.; Han, K.; Zhuo, F. P.; Liu, L. J.; Chen, X. Y.; Peng, B. L.; Wang, X. P.; Feng, Q.; Wei, Y. Z. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C 2019, 7, 4999–5008.

[53]

Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

[54]

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

[55]

Qiao, J.; Song, Q. H.; Xuan, L. X.; Liu, J. R.; Zhang, X.; Zheng, S. N.; Lin, J. P.; Cai, W. Q.; Zhang, Q. D.; Zeng, Z. H. et al. Dual cross-linked magnetic MXene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater. 2024, 2401687

[56]

Guo, Z. P.; Wang, Y. L.; Huang, J. J.; Zhang, S. Y.; Zhang, R. Q.; Ye, D. Z.; Cai, G. M.; Yang, H. J.; Gu, S. J.; Xu, W. L. Multi-functional and water-resistant conductive silver nanoparticle-decorated cotton textiles with excellent joule heating performances and human motion monitoring. Cellulose 2021, 28, 7483–7495.

[57]

Zhang, Y. J.; Ren, H.; Chen, H. Q.; Chen, Q. J.; Jin, L. J.; Peng, W. M.; Xin, S. X.; Bai, Y. X. Cotton fabrics decorated with conductive graphene nanosheet inks for flexible wearable heaters and strain sensors. ACS Appl. Nano Mater. 2021, 4, 9709–9720.

[58]

Liu, Q.; Zhang, Y.; Liu, Y. B.; Liu, Z. X.; Zhang, B. L.; Zhang, Q. Y. Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. J. Alloys Compd. 2021, 860, 158151.

[59]

Souri, H.; Bhattacharyya, D. Wool Fabrics decorated with carbon-based conductive ink for low-voltage heaters. Mater. Adv. 2022, 3, 3952–3960.

[60]

Chen, Q. J.; Jin, L. J.; Xin, S. X.; Bai, Y. X.; Wang, W. J.; Gao, W. S. Polyethylene/carbon fiber composites reinforced by a non-covalent compatibilization approach for flexible electric heater and structural self-monitoring. Appl. Surf. Sci. 2022, 601, 154207.

[61]

Deokar, G.; Reguig, A.; Tripathi, M.; Buttner, U.; Fina, A.; Dalton, A. B.; Costa, P. M. F. J. Flexible, air-stable, high-performance heaters based on nanoscale-thick graphite films. ACS Appl. Mater. Interfaces 2022, 14, 17899–17910.

[62]

Zou, R.; Liu, F.; Hu, N.; Ning, H. M.; Jiang, X. P.; Xu, C. H.; Fu, S. Y.; Li, Y. Q.; Zhou, X. Y.; Yan, C. Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity. Carbon 2019, 149, 173–180.

[63]

Issman, L.; Alper, M.; Howard, S.; Karch, C.; Yeshurun, S.; Pick, M.; Boies, A. Direct-spun CNT textiles for high-performance electromagnetic interference shielding in an ultra-wide bandwidth. Carbon 2023, 206, 166–180.

Nano Research
Pages 8521-8530
Cite this article:
Li D, Wang P, Li Y, et al. 3D-structured carbon nanotube fibers as ultra-robust fabrics for adaptive electromagnetic shielding. Nano Research, 2024, 17(9): 8521-8530. https://doi.org/10.1007/s12274-024-6814-z
Topics:

341

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 April 2024
Revised: 03 June 2024
Accepted: 09 June 2024
Published: 11 July 2024
© Tsinghua University Press 2024
Return