Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Design of non-noble metal electrocatalysts for biomass conversion to high-value chemicals and understanding the related catalytic mechanisms are of profound significance but have remained a major challenge. Here, we developed a novel biomass-derived electrocatalyst (denoted as Cu/NC), featuring with electron-deficient copper nanoparticles anchored on N-doped carbon nanosheets, for the electrochemical reduction of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF, a vital precursor of functional polymers). The optimized Cu/NC electrocatalyst exhibited an excellent performance with high Faradaic efficiency (89.5%) and selectivity (90.8%) of BHMF at a low concentration of HMF (18.1 mM). Even at a very high HMF concentration (108.6 mM), the Faraday efficiency and selectivity of BHMF could still reach 74.8% and 81.1%, respectively. This performance approached those of the reported noble metal-based electrocatalysts. Mechanism study revealed that the N doping in the Cu/NC catalyst could regulate the electronic structure of Cu, strengthening the adsorption of the HMF carbonyl group, and thus boosting the selectivity of BHMF. Additionally, strong electronic metal-support interactions of Cu and the N-doped carbon support optimized the charge transfer rate, thus promoting the dissociation of water to the active hydrogen (H*) species and boosting the reaction kinetic rate of H* and HMF.
Wang, T. W.; Yin, Z. W.; Guo, Y. H.; Bai, F. Y.; Chen, J.; Dong, W. D.; Liu, J.; Hu, Z. Y.; Chen, L. H.; Li, Y. et al. Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal. CCS Chem. 2023, 5, 1773–1788.
Zhang, B.; Biswal, B. K.; Zhang, J. J.; Balasubramanian, R. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: Progress and perspectives. Chem. Rev. 2023, 123, 7193–7294.
Xu, H.; Xu, G. X.; Huang, B. J.; Yan, J. B.; Wang, M.; Chen, L. S.; Shi, J. L. Zn-organic batteries for the semi-hydrogenation of biomass aldehyde derivatives and concurrently enhanced power output. Angew. Chem., Int. Ed. 2023, 62, e202218603.
Cui, E. T.; Li, Q. P.; Wang, X.; Xu, N.; Zhang, F.; Hou, G. H.; Xie, M. H.; Wang, Z. C.; Yang, X. L.; Zhang, Y. J. Regulating the interfacial electronic coupling of PtNi/TiO2 via bond evolution for highly efficient hydrogenation of 5-hydroxymethylfurfural. Appl. Catal. B: Environ. 2023, 329, 122560.
Wu, Y. D.; Jiang, Y. M.; Chen, W.; Yue, X.; Dong, C. L.; Qiu, M. Y.; Nga, T. T. T.; Yang, M.; Xia, Z. C.; Xie, C. et al. Selective electroreduction of 5-hydroxymethylfurfural to dimethylfuran in neutral electrolytes via hydrogen spillover and adsorption configuration adjustment. Adv. Mater. 2024, 36, 2307799.
Yuan, X.; Lee, K.; Schmidt, J. R.; Choi, K. S. Halide adsorption enhances electrochemical hydrogenolysis of 5-hydroxymethylfurfural by suppressing hydrogenation. J. Am. Chem. Soc. 2023, 145, 20473–20484.
Zakrzewska, M. E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev. 2011, 111, 397–417.
Chen, Z.; Sun, H. Y.; Kong, W. Q.; Chen, L.; Zuo, W. W. Closed-loop utilization of polyester in the textile industry. Green Chem. 2023, 25, 4429–4437.
Duan, X. Y.; Cao, W. H.; He, X. N.; Wang, M. Q.; Cong, R. Y.; Zhang, Z. C.; Ning, C.; Wang, C. S.; Zhao, S. L.; Li, Z. Q. et al. Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications. Chem. Eng. J. 2023, 476, 146536.
Ji, K. Y.; Xu, M.; Xu, S. M.; Wang, Y.; Ge, R. X.; Hu, X. Y.; Sun, X. M.; Duan, H. H. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209849.
Wu, H. R.; Song, J. L.; Xie, C.; Hu, Y.; Zhang, P.; Yang, G. Y.; Han, B. X. Surface engineering in PbS via partial oxidation: Towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone. Chem. Sci. 2019, 10, 1754–1759.
Panigrahy, S.; Mishra, R.; Panda, P.; Kempasiddaiah, M.; Barman, S. Carbon-supported Ag nanoparticle aerogel for electrocatalytic hydrogenation of 5-(hydroxymethyl)furfural to 2,5-hexanedione under acidic conditions. ACS Appl. Nano Mater. 2022, 5, 8314–8323.
Simoska, O.; Rhodes, Z.; Weliwatte, S.; Cabrera-Pardo, J. R.; Gaffney, E. M.; Lim, K.; Minteer, S. D. Advances in electrochemical modification strategies of 5-hydroxymethylfurfural. ChemSusChem 2021, 14, 1674–1686.
Yang, M.; Yuan, Z. R.; Peng, R. X.; Wang, S. Y.; Zou, Y. Q. Recent progress on electrocatalytic valorization of biomass-derived organics. Energy Environ. Mater. 2022, 5, 1117–1138.
Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 2019, 21, 6210–6219.
He, Y. P.; Zhu, B. T.; Wang, F.; Xiong, J.; Akram, M. A.; Feng, L. Tuning the adsorption behaviors of non-noble electrocatalysts to boost valorization of 5-hydroxymethylfurfural. J. Mater. Chem. A 2023, 11, 14284–14293.
Zhang, W. F.; Qi, Y. B.; Zhao, Y.; Ge, W. X.; Dong, L.; Shen, J. H.; Jiang, H. L.; Li, C. Z. Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural. Sci. Bull. 2023, 68, 2190–2199.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv. Sci. 2021, 8, 2102886.
Sahoo, S. K.; Heske, J.; Antonietti, M.; Qin, Q.; Oschatz, M.; Kühne, T. D. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl. Energy Mater. 2020, 3, 10061–10069.
Xu, W. L.; Yu, C. J.; Chen, J. Z.; Liu, Z. Y. Electrochemical hydrogenation of biomass-based furfural in aqueous media by Cu catalyst supported on N-doped hierarchically porous carbon. Appl. Catal. B: Environ. 2022, 305, 121062.
Gao, Y.; Ge, L.; Xu, H.; Davey, K.; Zheng, Y.; Qiao, S. Z. Electrocatalytic refinery of biomass-based 5-hydroxymethylfurfural to fine chemicals. ACS Catal. 2023, 13, 11204–11231.
Taniguchi, Y.; Shu, Y.; Takada, R.; Miyake, K.; Uchida, Y.; Nishiyama, N. A zeolite templating method for fabricating edge site-enriched N-doped carbon materials. Nanoscale Adv. 2023, 5, 4233–4239.
Wu, Y. H.; Chen, C. J.; Yan, X. P.; Wu, R. Z.; Liu, S. J.; Ma, J.; Zhang, J. L.; Liu, Z. M.; Xing, X. Q.; Wu, Z. H. et al. Enhancing CO2 electroreduction to CH4 over Cu nanoparticles supported on N-doped carbon. Chem. Sci. 2022, 13, 8388–8394.
Chen, C. J.; Yan, X. P.; Liu, S. J.; Wu, Y. H.; Wan, Q.; Sun, X. F.; Zhu, Q. G.; Liu, H. Z.; Ma, J.; Zheng, L. R. et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem., Int. Ed. 2020, 59, 16459–16464.
de Luna, G. S.; Sacco, A.; Hernandez, S.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Insights into the electrochemical reduction of 5-hydroxymethylfurfural at high current densities. ChemSusChem 2022, 15, e202102504.
Li, M. X.; Zheng, T. X.; Lu, D. F.; Dai, S. W.; Chen, X.; Pan, X. C.; Dong, D. B.; Weng, R. G.; Xu, G.; Wang, F. A. Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) towards 2,5-bis(hydroxymethy)furan (BHMF). J. Energy Chem. 2023, 84, 101–111.
Kumar, R.; Lee, H. H.; Chen, E.; Du, Y. P.; Lin, C. Y.; Prasanseang, W.; Solos, T.; Choojun, K.; Sooknoi, T.; Xie, R. K. et al. Facile synthesis of the atomically dispersed hydrotalcite oxide supported copper catalysts for the selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis (hydroxymethyl) furan. Appl. Catal., B. 2023, 329, 122547
Lyu, Z.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 1909–1915.
Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc. 2019, 141, 38–41.
He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582–12594.
Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of Palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.
Xue, Z. H.; Han, J. T.; Feng, W. J.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon Phase boundaries by the Mott-Schottky effect for gas-phase methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 2697–2701.
Huang, Z. D.; Feng, C.; Sun, J. P.; Xu, B.; Huang, T. X.; Wang, X. K.; Dai, F. N.; Sun, D. F. Ultrathin metal-organic framework nanosheets-derived yolk–shell Ni0.85Se@NC with rich Se-vacancies for enhanced water electrolysis. CCS Chem. 2020, 2, 2696–2711.
Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.
Zhang, L. L.; Wang, T.; Gao, T. N.; Xiong, H. L.; Zhang, R.; Liu, Z. L.; Song, S. Y.; Dai, S.; Qiao, Z. A. Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance. CCS Chem. 2021, 3, 870–881.
Zhang, J. H.; Qi, Z. H.; Liu, Y.; Wei, J. N.; Tang, X.; He, L.; Peng, L. C. Selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over a cheap carbon-nanosheets-supported Zr/Ca bimetallic catalyst. Energy Fuels 2020, 34, 8432–8439.
Guo, J. Y.; Wang, G. J.; Cui, S. S.; Xia, B. Y.; Liu, Z. J.; Zang, S. Q.; Wang, S. Y. Enhanced adsorption with hydroxymethyl and aldehyde over the heterophase interface for efficient biomass electrooxidation. Sci. China Mater. 2023, 66, 2698–2707.
Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.
Zhang, D. F.; Chen, J. X.; Hao, Z. J.; Jiao, L.; Ge, Q. F.; Fu, W. F.; Lv, X. J. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage. Chem Catal. 2021, 1, 393–406.
Sanyal, U.; Yuk, S. F.; Koh, K.; Lee, M. S.; Stoerzinger, K.; Zhang, D. F.; Meyer, L. C.; Lopez-Ruiz, J. A.; Karkamkar, A.; Holladay, J. D. et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew. Chem., Int. Ed. 2021, 60, 290–296.
Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.
Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. Y. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy. 2020, 71, 104653
Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. 2021, 133, 20415–20420.
Wang, X. L.; Ma, R. G.; Li, S. L.; Xu, M. M.; Liu, L. J.; Feng, Y. H.; Thomas, T.; Yang, M. H.; Wang, J. C. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 2023, 13, 2300765
Wu, T.; Xu, Z. A.; Wang, X. L.; Luo, M. J.; Xia, Y.; Zhang, X. C.; Li, J. T.; Liu, J.; Wang, J. C.; Wang, H. L. et al. Surface-confined self-reconstruction to sulfate-terminated ultrathin layers on NiMo3S4 toward biomass molecule electro-oxidation. Appl. Catal. B: Environ. 2023, 323, 122126.
Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432–5437.
Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.
Dutra, M.; Garashchuk, S.; Akimov, A. V. The quantum trajectory‐guided adaptive Gaussian methodology in the Libra software package. Int. J. Quantum Chem. 2023, 123, e27078.
Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.