AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Insight into the mechanism of 5-hydroxymethylfurfural electroreduction to 2,5-bis(hydroxymethyl)furan over Cu anchored N-doped carbon nanosheets

Haoran Wu1Xinwei Chen2Haishan Xu2Runlu Yang1Xin Wang1Junying Chen1Zhenbing Xie3( )Liang Wu2( )Yiyong Mai2( )
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
Show Author Information

Graphical Abstract

Novel biomass-derived Cu/NC electrocatalysts, featuring with electron-deficient copper nanoparticles anchored on N-doped carbon nanosheets, were designed for the highly efficient electroreduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan.

Abstract

Design of non-noble metal electrocatalysts for biomass conversion to high-value chemicals and understanding the related catalytic mechanisms are of profound significance but have remained a major challenge. Here, we developed a novel biomass-derived electrocatalyst (denoted as Cu/NC), featuring with electron-deficient copper nanoparticles anchored on N-doped carbon nanosheets, for the electrochemical reduction of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF, a vital precursor of functional polymers). The optimized Cu/NC electrocatalyst exhibited an excellent performance with high Faradaic efficiency (89.5%) and selectivity (90.8%) of BHMF at a low concentration of HMF (18.1 mM). Even at a very high HMF concentration (108.6 mM), the Faraday efficiency and selectivity of BHMF could still reach 74.8% and 81.1%, respectively. This performance approached those of the reported noble metal-based electrocatalysts. Mechanism study revealed that the N doping in the Cu/NC catalyst could regulate the electronic structure of Cu, strengthening the adsorption of the HMF carbonyl group, and thus boosting the selectivity of BHMF. Additionally, strong electronic metal-support interactions of Cu and the N-doped carbon support optimized the charge transfer rate, thus promoting the dissociation of water to the active hydrogen (H*) species and boosting the reaction kinetic rate of H* and HMF.

Electronic Supplementary Material

Download File(s)
6816_ESM.pdf (3.7 MB)

References

[1]

Wang, T. W.; Yin, Z. W.; Guo, Y. H.; Bai, F. Y.; Chen, J.; Dong, W. D.; Liu, J.; Hu, Z. Y.; Chen, L. H.; Li, Y. et al. Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal. CCS Chem. 2023, 5, 1773–1788.

[2]

Zhang, B.; Biswal, B. K.; Zhang, J. J.; Balasubramanian, R. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: Progress and perspectives. Chem. Rev. 2023, 123, 7193–7294.

[3]

Xu, H.; Xu, G. X.; Huang, B. J.; Yan, J. B.; Wang, M.; Chen, L. S.; Shi, J. L. Zn-organic batteries for the semi-hydrogenation of biomass aldehyde derivatives and concurrently enhanced power output. Angew. Chem., Int. Ed. 2023, 62, e202218603.

[4]

Cui, E. T.; Li, Q. P.; Wang, X.; Xu, N.; Zhang, F.; Hou, G. H.; Xie, M. H.; Wang, Z. C.; Yang, X. L.; Zhang, Y. J. Regulating the interfacial electronic coupling of PtNi/TiO2 via bond evolution for highly efficient hydrogenation of 5-hydroxymethylfurfural. Appl. Catal. B: Environ. 2023, 329, 122560.

[5]

Wu, Y. D.; Jiang, Y. M.; Chen, W.; Yue, X.; Dong, C. L.; Qiu, M. Y.; Nga, T. T. T.; Yang, M.; Xia, Z. C.; Xie, C. et al. Selective electroreduction of 5-hydroxymethylfurfural to dimethylfuran in neutral electrolytes via hydrogen spillover and adsorption configuration adjustment. Adv. Mater. 2024, 36, 2307799.

[6]

Yuan, X.; Lee, K.; Schmidt, J. R.; Choi, K. S. Halide adsorption enhances electrochemical hydrogenolysis of 5-hydroxymethylfurfural by suppressing hydrogenation. J. Am. Chem. Soc. 2023, 145, 20473–20484.

[7]

Zakrzewska, M. E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev. 2011, 111, 397–417.

[8]

Chen, Z.; Sun, H. Y.; Kong, W. Q.; Chen, L.; Zuo, W. W. Closed-loop utilization of polyester in the textile industry. Green Chem. 2023, 25, 4429–4437.

[9]

Duan, X. Y.; Cao, W. H.; He, X. N.; Wang, M. Q.; Cong, R. Y.; Zhang, Z. C.; Ning, C.; Wang, C. S.; Zhao, S. L.; Li, Z. Q. et al. Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications. Chem. Eng. J. 2023, 476, 146536.

[10]

Ji, K. Y.; Xu, M.; Xu, S. M.; Wang, Y.; Ge, R. X.; Hu, X. Y.; Sun, X. M.; Duan, H. H. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209849.

[11]

Wu, H. R.; Song, J. L.; Xie, C.; Hu, Y.; Zhang, P.; Yang, G. Y.; Han, B. X. Surface engineering in PbS via partial oxidation: Towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone. Chem. Sci. 2019, 10, 1754–1759.

[12]

Panigrahy, S.; Mishra, R.; Panda, P.; Kempasiddaiah, M.; Barman, S. Carbon-supported Ag nanoparticle aerogel for electrocatalytic hydrogenation of 5-(hydroxymethyl)furfural to 2,5-hexanedione under acidic conditions. ACS Appl. Nano Mater. 2022, 5, 8314–8323.

[13]

Simoska, O.; Rhodes, Z.; Weliwatte, S.; Cabrera-Pardo, J. R.; Gaffney, E. M.; Lim, K.; Minteer, S. D. Advances in electrochemical modification strategies of 5-hydroxymethylfurfural. ChemSusChem 2021, 14, 1674–1686.

[14]

Yang, M.; Yuan, Z. R.; Peng, R. X.; Wang, S. Y.; Zou, Y. Q. Recent progress on electrocatalytic valorization of biomass-derived organics. Energy Environ. Mater. 2022, 5, 1117–1138.

[15]

Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 2019, 21, 6210–6219.

[16]

He, Y. P.; Zhu, B. T.; Wang, F.; Xiong, J.; Akram, M. A.; Feng, L. Tuning the adsorption behaviors of non-noble electrocatalysts to boost valorization of 5-hydroxymethylfurfural. J. Mater. Chem. A 2023, 11, 14284–14293.

[17]

Zhang, W. F.; Qi, Y. B.; Zhao, Y.; Ge, W. X.; Dong, L.; Shen, J. H.; Jiang, H. L.; Li, C. Z. Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural. Sci. Bull. 2023, 68, 2190–2199.

[18]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[19]

Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv. Sci. 2021, 8, 2102886.

[20]
Liang, C. P.; Huang, J. R.; Zhu, H. L.; Zhao, Z. H.; Yu, C.; Liao, P. Q.; Chen, X. M. Precisely tailoring the first coordination shell of metal centers in porous nitrogen-doped carbon promoting electroreduction of CO2 under neutral condition. CCS Chem., in press, https://doi.org/10.31635/ccschem.023.202303333.
[21]

Sahoo, S. K.; Heske, J.; Antonietti, M.; Qin, Q.; Oschatz, M.; Kühne, T. D. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl. Energy Mater. 2020, 3, 10061–10069.

[22]

Xu, W. L.; Yu, C. J.; Chen, J. Z.; Liu, Z. Y. Electrochemical hydrogenation of biomass-based furfural in aqueous media by Cu catalyst supported on N-doped hierarchically porous carbon. Appl. Catal. B: Environ. 2022, 305, 121062.

[23]

Gao, Y.; Ge, L.; Xu, H.; Davey, K.; Zheng, Y.; Qiao, S. Z. Electrocatalytic refinery of biomass-based 5-hydroxymethylfurfural to fine chemicals. ACS Catal. 2023, 13, 11204–11231.

[24]

Taniguchi, Y.; Shu, Y.; Takada, R.; Miyake, K.; Uchida, Y.; Nishiyama, N. A zeolite templating method for fabricating edge site-enriched N-doped carbon materials. Nanoscale Adv. 2023, 5, 4233–4239.

[25]

Wu, Y. H.; Chen, C. J.; Yan, X. P.; Wu, R. Z.; Liu, S. J.; Ma, J.; Zhang, J. L.; Liu, Z. M.; Xing, X. Q.; Wu, Z. H. et al. Enhancing CO2 electroreduction to CH4 over Cu nanoparticles supported on N-doped carbon. Chem. Sci. 2022, 13, 8388–8394.

[26]

Chen, C. J.; Yan, X. P.; Liu, S. J.; Wu, Y. H.; Wan, Q.; Sun, X. F.; Zhu, Q. G.; Liu, H. Z.; Ma, J.; Zheng, L. R. et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem., Int. Ed. 2020, 59, 16459–16464.

[27]

de Luna, G. S.; Sacco, A.; Hernandez, S.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Insights into the electrochemical reduction of 5-hydroxymethylfurfural at high current densities. ChemSusChem 2022, 15, e202102504.

[28]

Li, M. X.; Zheng, T. X.; Lu, D. F.; Dai, S. W.; Chen, X.; Pan, X. C.; Dong, D. B.; Weng, R. G.; Xu, G.; Wang, F. A. Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) towards 2,5-bis(hydroxymethy)furan (BHMF). J. Energy Chem. 2023, 84, 101–111.

[29]

Kumar, R.; Lee, H. H.; Chen, E.; Du, Y. P.; Lin, C. Y.; Prasanseang, W.; Solos, T.; Choojun, K.; Sooknoi, T.; Xie, R. K. et al. Facile synthesis of the atomically dispersed hydrotalcite oxide supported copper catalysts for the selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis (hydroxymethyl) furan. Appl. Catal., B. 2023, 329, 122547

[30]

Lyu, Z.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 1909–1915.

[31]

Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc. 2019, 141, 38–41.

[32]

He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582–12594.

[33]

Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of Palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.

[34]

Xue, Z. H.; Han, J. T.; Feng, W. J.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon Phase boundaries by the Mott-Schottky effect for gas-phase methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 2697–2701.

[35]

Huang, Z. D.; Feng, C.; Sun, J. P.; Xu, B.; Huang, T. X.; Wang, X. K.; Dai, F. N.; Sun, D. F. Ultrathin metal-organic framework nanosheets-derived yolk–shell Ni0.85Se@NC with rich Se-vacancies for enhanced water electrolysis. CCS Chem. 2020, 2, 2696–2711.

[36]

Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.

[37]

Zhang, L. L.; Wang, T.; Gao, T. N.; Xiong, H. L.; Zhang, R.; Liu, Z. L.; Song, S. Y.; Dai, S.; Qiao, Z. A. Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance. CCS Chem. 2021, 3, 870–881.

[38]

Zhang, J. H.; Qi, Z. H.; Liu, Y.; Wei, J. N.; Tang, X.; He, L.; Peng, L. C. Selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over a cheap carbon-nanosheets-supported Zr/Ca bimetallic catalyst. Energy Fuels 2020, 34, 8432–8439.

[39]

Guo, J. Y.; Wang, G. J.; Cui, S. S.; Xia, B. Y.; Liu, Z. J.; Zang, S. Q.; Wang, S. Y. Enhanced adsorption with hydroxymethyl and aldehyde over the heterophase interface for efficient biomass electrooxidation. Sci. China Mater. 2023, 66, 2698–2707.

[40]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[41]

Zhang, D. F.; Chen, J. X.; Hao, Z. J.; Jiao, L.; Ge, Q. F.; Fu, W. F.; Lv, X. J. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage. Chem Catal. 2021, 1, 393–406.

[42]

Sanyal, U.; Yuk, S. F.; Koh, K.; Lee, M. S.; Stoerzinger, K.; Zhang, D. F.; Meyer, L. C.; Lopez-Ruiz, J. A.; Karkamkar, A.; Holladay, J. D. et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew. Chem., Int. Ed. 2021, 60, 290–296.

[43]

Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

[44]

Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. Y. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy. 2020, 71, 104653

[45]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. 2021, 133, 20415–20420.

[46]

Wang, X. L.; Ma, R. G.; Li, S. L.; Xu, M. M.; Liu, L. J.; Feng, Y. H.; Thomas, T.; Yang, M. H.; Wang, J. C. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 2023, 13, 2300765

[47]

Wu, T.; Xu, Z. A.; Wang, X. L.; Luo, M. J.; Xia, Y.; Zhang, X. C.; Li, J. T.; Liu, J.; Wang, J. C.; Wang, H. L. et al. Surface-confined self-reconstruction to sulfate-terminated ultrathin layers on NiMo3S4 toward biomass molecule electro-oxidation. Appl. Catal. B: Environ. 2023, 323, 122126.

[48]

Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432–5437.

[49]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[50]

Dutra, M.; Garashchuk, S.; Akimov, A. V. The quantum trajectory‐guided adaptive Gaussian methodology in the Libra software package. Int. J. Quantum Chem. 2023, 123, e27078.

[51]

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

[52]

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[53]

Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.

Nano Research
Pages 7991-7999
Cite this article:
Wu H, Chen X, Xu H, et al. Insight into the mechanism of 5-hydroxymethylfurfural electroreduction to 2,5-bis(hydroxymethyl)furan over Cu anchored N-doped carbon nanosheets. Nano Research, 2024, 17(9): 7991-7999. https://doi.org/10.1007/s12274-024-6816-x
Topics:

274

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 May 2024
Revised: 05 June 2024
Accepted: 07 June 2024
Published: 05 July 2024
© Tsinghua University Press 2024
Return