AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring the potential of constructing a hybrid supercapacitor with FeCoNi-LDH porous material containing oxygen vacancies for high-performance energy storage applications

Jihao Su1Ling Yang1,2Dengbin Yu1( )Shaojun Dong1,2,3 ( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
College of Chemistry, Jilin University, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

The introduction of oxygen vacancies, insights from density functional theory (DFT) theoretical calculations, and the synergistic effect of ternary metal components all contribute to the excellent electrochemical performance of the FeCoNi-layered double hydroxide//activated carbon hybrid supercapacitor (FeCoNi-LDH//AC HSC). This work provides valuable insights for developing next-generation energy storage devices with outstanding performance.

Abstract

A significant challenge in developing high-performance hybrid supercapacitors (HSCs) is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical capacitance performance. The FeCoNi-layered double hydroxide (FeCoNi-LDH) porous material has a specific capacitance of 1960 F·g−1 when used as the anode material at 1 A·g−1. The FeCoNi-LDH material exhibits nanoplates with a distinct spindle morphology on their surface. Due to the combined action of the three metals and abundant oxygen vacancies, they exhibit unique rate performance and cycle stability. The electronic structure of LDH and the regulation of oxygen vacancy were confirmed by density functional theory (DFT) calculations. This suggests that the strength of hydroxide can reduce the energy required for oxygen vacancy formation in FeCoNi-LDH nanosheets and enhance ion and charge transfer, as well as electrolyte adsorption on the electrode surface. The FeCoNi-LDH//activated carbon (AC) HSC has an energy density of 53.2 Wh·kg−1 at a power density of 800 W·kg−1, surpassing other devices composed of comparable materials during the same timeframe. This study made significant advances in the design and synthesis of a ternary LDH porous structure with distinct oxygen vacancies, as well as its potential application in electrochemical energy storage.

Electronic Supplementary Material

Download File(s)
6817_ESM.pdf (447.1 KB)

References

[1]

Wang, Q. Y.; Luo, Y. M.; Hou, R. Z.; Zaman, S.; Qi, K.; Liu, H. F.; Park, H. S.; Xia, B. Y. Redox tuning in crystalline and electronic structure of bimetal-organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. Adv. Mater. 2019, 31, 1905744.

[2]

Liang, C. M.; Meng, Y. T.; Zhang, Y.; Zhang, H. F.; Wang, W. X.; Lu, M.; Wang, G. S. Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: A review. J. Energy Storage 2023, 65, 107341.

[3]

Park, J.; Lee, J.; Kim, W. Redox-active water-in-salt electrolyte for high-energy-density supercapacitors. ACS Energy Lett. 2022, 7, 1266–1273.

[4]

Xu, X. J.; Liu, J.; Liu, J. W.; Ouyang, L. Z.; Hu, R. Z.; Wang, H.; Yang, L. C.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573.

[5]

Meng, Y. T.; Liang, C. M.; Jiang, D.; Zhang, Y.; Su, J. H.; Xu, X. H.; Lu, M. Ion modified cobalt-based layered double hydroxides and its derivatives as electrode materials for supercapacitors: A review and perspective. J. Energy Storage 2023, 74, 109105.

[6]

Wang, J. W.; Ding, Q.; Bai, C. H.; Wang, F. F.; Sun, S. G.; Xu, Y. Q.; Li, H. J. Synthesis of CNTs/CoNiFe-LDH nanocomposite with high specific surface area for asymmetric supercapacitor. Nanomaterials 2021, 11, 2155.

[7]
Shin, S. J.; Gittins, J. W.; Balhatchet, C. J.; Walsh, A.; Forse, A. C. Metal-organic framework supercapacitors: Challenges and opportunities. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202308497.
[8]

Wang, F.; Lee, J.; Chen, L.; Zhang, G. Y.; He, S. J.; Han, J. Q.; Ahn, J.; Cheong, J. Y.; Jiang, S. H.; Kim, I. D. Inspired by wood: Thick electrodes for supercapacitors. ACS Nano 2023, 17, 8866–8898.

[9]

Xiong, C. Y.; Wang, T. X.; Han, J.; Zhang, Z.; Ni, Y. H. Recent research progress of paper-based supercapacitors based on cellulose. Energy Environ. Mater. 2024, 7, e12651.

[10]

Guo, H.; Qiao, M.; Yan, J. F.; Jiang, L.; Yu, J. C.; Li, J. Q.; Deng, S. F.; Qu, L. T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance. Adv. Funct. Mater. 2023, 33, 2213514.

[11]

Pameté, E.; Köps, L.; Kreth, F. A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The many deaths of supercapacitors: Degradation, aging, and performance fading. Adv. Energy Mater. 2023, 13, 2301008.

[12]

Xiong, C. Y.; Wang, T. X.; Zhou, L. F.; Zhang, Y. K.; Dai, L.; Zhou, Q. S.; Ni, Y. H. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding. Chem. Eng. J. 2023, 472, 144958.

[13]

Shin, C.; Yao, L. L.; Lin, H. C.; Liu, P.; Ng, T. N. Photothermal supercapacitors with gel polymer electrolytes for wide temperature range operation. ACS Energy Lett. 2023, 8, 1911–1918.

[14]

Jiang, T. T.; Wang, Y. C.; Chen, G. Z. Electrochemistry of titanium carbide MXenes in supercapacitor. Small Methods 2023, 7, 2201724.

[15]

Xiong, C. Y.; Dang, W. H.; Yang, Q.; Zhou, Q. S.; Shen, M. X.; Xiong, Q. C.; An, M.; Jiang, X.; Ni, Y. H.; Ji, X. L. Integrated ink printing paper based self-powered electrochemical multimodal biosensing (IFP-Multi) with ChatGPT–bioelectronic interface for personalized healthcare management. Adv. Sci. 2024, 11, 2305962.

[16]

Jiao, Z. C.; Chen, Y. Q.; Du, M.; Demir, M.; Yan, F. X.; Xia, W. M.; Zhang, Y.; Wang, C.; Gu, M. M.; Zhang, X. X. et al. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. J. Colloid Interface Sci. 2023, 633, 723–736

[17]

Xu, Q. L.; Liu, X.; Zhang, J.; Xu, Y. F.; Zhou, M.; Li, J. X.; Du, M. Z.; Zhang, K.; Qian, X. Y.; Xu, B. et al. Transition metal hydroxides@conducting MOFs on carbon nanotube yarns for ultra-stable quasi-solid-state supercapacitors with a ship-in-a-bottle architecture. J. Mater. Chem. A 2023, 11, 5309–5319.

[18]

Bao, E. H.; Ren, X. L.; Wang, Y.; Zhang, Z. Y.; Luo, C. W.; Liu, X. H.; Xu, C. J.; Chen, H. Y. Advanced hybrid supercapacitors assembled with CoNi LDH nanoflowers and nanosheets as high-performance cathode materials. J. Energy Storage 2024, 82, 110535.

[19]

Zhu, Y. F.; Tao, Z. R.; Cai, C. Y.; Tan, Y. M.; Wang, A. D.; Yang, Y. Y. Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density supercapacitor applications. Inorg. Chem. Commun. 2022, 139, 109391.

[20]

Makgopa, K.; Ratsoma, M. S.; Modibane, K. D. Intrinsic properties of metal-organic frameworks (MOFs) in supercapacitor applications. Curr. Opin. Electrochem. 2022, 36, 101112.

[21]

Vinodh, R.; Babu, R. S.; Sambasivam, S.; Gopi, C. V. V. M.; Alzahmi, S.; Kim, H. J.; de Barros, A. L. F.; Obaidat, I. M. Recent advancements of polyaniline/metal organic framework (PANI/MOF) composite electrodes for supercapacitor applications: A critical review. Nanomaterials 2022, 12, 1511.

[22]

Wang, T. X.; Xiong, C. Y.; Zhang, Y. K.; Wang, B.; Xiong, Q.; Zhao, M. J.; Ni, Y. H. Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Res. 2024, 17, 904–912.

[23]

Wang, X.; Cheng, B.; Zhang, L. Y.; Yu, J. G.; Li, Y. J. Synthesis of MgNiCo LDH hollow structure derived from ZIF-67 as superb adsorbent for Congo red. J. Colloid Interface Sci. 2022, 612, 598–607.

[24]

Acharya, J.; Ko, T. H.; Seong, J. G.; Seo, M. K.; Khil, M. S.; Kim, H. Y.; Kim, B. S. Hybrid electrodes based on Zn–Ni–Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors. ACS Appl. Nano Mater. 2020, 3, 8679–8690.

[25]

Gao, M. M.; Wang, Z. Y.; Liu, Z. C.; Huang, Y.; Wang, F. X.; Wang, M. C.; Yang, S.; Li, J. K.; Liu, J. X.; Qi, H. Y. et al. 2D conjugated metal-organic frameworks embedded with iodine for high-performance ammonium-ion hybrid supercapacitors. Adv. Mater. 2023, 35, 2305575.

[26]

Huang, C. H.; Sun, W. M.; Jin, Y. X.; Guo, Q. Q.; Mücke, D.; Chu, X. Y.; Liao, Z. Q.; Chandrasekhar, N.; Huang, X.; Lu, Y. et al. A general synthesis of nanostructured conductive metal-organic frameworks from insulating MOF precursors for supercapacitors and chemiresistive sensors. Angew. Chem., Int. Ed. 2024, 63, e202313591.

[27]

Tang, Y. Q.; Shen, H. M.; Cheng, J. Q.; Liang, Z. B.; Qu, C.; Tabassum, H.; Zou, R. Q. Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors. Adv. Funct. Mater. 2020, 30, 1908223.

[28]

Guo, J. W.; Zhao, H. B.; Yang, Z. W.; Wang, Y. W.; Liu, X. L.; Wang, L. F.; Zhao, Z. H.; Wang, A. Z.; Ding, L. H.; Liu, H. et al. Hierarchical porous 3D Ni3N-CoN/NC heterojunction nanosheets with nitrogen vacancies for high-performance flexible supercapacitor. Nano Energy 2023, 116, 108763.

[29]

Nwaji, N.; Kang, H.; Goddati, M.; Tufa, L. T.; Gwak, J.; Sharan, A.; Singh, N.; Lee, J. Sulphur vacancy induced Co3S4@CoMo2S4 nanocomposites as a functional electrode for high performance supercapacitors. J. Mater. Chem. A 2023, 11, 3640–3652.

[30]

Liang, C. M.; Feng, Z. K.; Chen, M. W.; Xv, X. H.; Lu, M.; Wang, W. X. Nanoflower-like hollow NiMnCo-OH decorated with self-assembled 2D Ti3C2T x for high-efficiency hybrid supercapacitors. J. Alloys Compd. 2024, 970, 172537.

[31]

Chen, Z.; Liu, Z. Y.; Xu, X. Accurate descriptions of molecule-surface interactions in electrocatalytic CO2 reduction on the copper surfaces. Nat. Commun. 2023, 14, 936.

[32]

Park, Y.; Korzun, T.; Moses, A. S.; Singh, P.; Levasseur, P. R.; Demessie, A. A.; Sharma, K. S.; Morgan, T.; Raitmayr, C. J.; Avila, U. et al. Targeted nanocarriers for systemic delivery of IRAK4 inhibitors to inflamed tissues. Small 2024, 20, 2306270.

[33]

Song, J. L.; Chai, L. L.; Kumar, A.; Zhao, M.; Sun, Y. Z.; Liu, X. G.; Pan, J. Q. Precise tuning of hollow and pore size of bimetallic MOFs derivate to construct high-performance nanoscale materials for supercapacitors and sodium-ion batteries. Small 2024, 20, 2306272.

[34]

Jiang, M. Y.; Jiang, D. G.; Cao, X. Y.; Wang, J. H.; Sun, Y. S.; Zhang, M. Z.; Liu, J. Q. Scalable 2D/2D assembly of ultrathin MOF/MXene sheets for stretchable and bendable energy storage devices. Adv. Funct. Mater. 2024, 34, 2312692.

[35]

Meng, Y. T.; Liang, C. M.; Jiang, D.; Zhang, Y.; Su, J. H.; Xu, X. H.; Lu, M. ZnNiCo layered double hydroxide@Mxene with 2D/2D hierarchical structure derived from micro-sized ZIF-8/67 anchored to Mxene for asymmetric supercapacitors. Chem. Eng. J. 2024, 479, 147695.

[36]

Poudel, M. B.; Awasthi, G. P.; Kim, H. J. Novel insight into the adsorption of Cr(VI) and Pb(II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312.

[37]

Xiao, Z. Y.; Mei, Y. J.; Yuan, S.; Mei, H.; Xu, B.; Bao, Y. X.; Fan, L. L.; Kang, W. P.; Dai, F. N.; Wang, R. et al. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 2019, 13, 7024–7030.

[38]

dos Santos, J. P. A.; Rufino, F. C.; Ota, J. I. Y.; Fernandes, R. C.; Vicentini, R.; Pagan, C. J. B.; Da Silva, L. M.; Zanin, H. Best practices for electrochemical characterization of supercapacitors. J. Energy Chem. 2023, 80, 265–283.

[39]

Cheng, H. H.; Li, J. P.; Meng, T.; Shu, D. Advances in Mn-based MOFs and their derivatives for high-performance supercapacitor. Small 2024, 20, 2308804.

[40]

Savariraj, A. D.; Raj, C. J.; Kale, A. M.; Kim, B. C. Road map for in situ grown binder-free MOFs and their derivatives as freestanding electrodes for supercapacitors. Small 2023, 19, 2207713.

[41]

Wu, C. S.; Geng, P. B.; Zhang, G. X.; Li, X. R.; Pang, H. Synthesis of conductive MOFs and their electrochemical application. Small 2024, 20, 2308264.

[42]

Zong, H. W.; Zhang, A. T.; Dong, J. J.; He, Y. J.; Fu, H. C.; Guo, H. W.; Liu, F. G.; Xu, J. T.; Liu, J. Q. Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 2023, 475, 146088.

[43]

Yan, Y.; Lin, X. H.; Ge, J. Y.; Li, X. H. Conductive metal-organic frameworks with wheel-shaped metallomacrocycle subunits as high-performance supercapacitor electrodes. Chem. Eng. J. 2023, 468, 143739.

[44]

Zhang, Y.; Liang, C. M.; Lu, M.; Yu, H.; Wang, G. S. Skillful introduction of urea during the synthesis of MOF-derived FeCoNi–CH/p-rGO with a spindle-shaped substrate for hybrid supercapacitors. ACS Omega 2022, 7, 33019–33030.

[45]

Su, J. H.; Zhang, Y.; Meng, Y. T.; Guan, X. H.; Lu, M. Synthesis of CoNi@ZIF-LDH with hierarchical porous structure based on structural design and site-directed transformation strategy assisted hybrid supercapacitor with high energy density. J. Alloys Compd. 2023, 957, 170387.

[46]

Jiang, D.; Wei, C. Y.; Zhu, Z. Y.; Guan, X. H.; Lu, M.; Zhang, X. J.; Wang, G. S. Synthesis of 3D flower-like hierarchical NiCo-LDH microspheres with boosted electrochemical performance for hybrid supercapacitors. Inorg. Chem. Front. 2021, 8, 4324–4333.

[47]

Chen, T. T.; Luo, L.; Wu, X.; Zhou, Y. L.; Yan, W.; Fan, M. Z.; Zhao, W. G. Three dimensional hierarchical porous nickel cobalt layered double hydroxides (LDHs) and nitrogen doped activated biocarbon composites for high-performance asymmetric supercapacitor. J. Alloys Compd. 2021, 859, 158318.

[48]

Guan, X. H.; Huang, M. H.; Yang, L.; Wang, G. S.; Guan, X. Facial design and synthesis of CoS x /Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 372, 151–162.

[49]

Zhang, H.; Xiong, T.; Chen, R.; Wang, Y. X.; Fang, C. M.; Xu, L. J.; Liu, C. L. High electrochemical performance of MnCo2O4.5 nanoneedles/NiCo LDH nanosheets as advanced electrodes of supercapacitor. Electrochim. Acta 2023, 455 142412.

[50]

Liang, R. B.; Liu, S.; Lin, J. R.; Dai, J. F.; Peng, J. Y.; Huang, P. Y.; Chen, J. W.; Xiao, P. A high mass loading flexible electrode with a sheet-like Mn3O4/NiMoO4@NiCo LDH on a carbon cloth for supercapacitors. RSC Adv. 2023, 13, 33463–33470.

[51]

Chen, X.; Li, S. Z.; Liu, Y. X.; Xie, K.; Wang, Y. Q. MOF-derived Mo-CoP@NiFe LDH hierarchical nanosheets for high-performance hybrid supercapacitors. J. Alloys Compd. 2022, 919, 165842.

[52]

Wang, Y. X.; Zhang, W. J.; Guo, X. L.; Liu, Y. Y.; Zheng, Y. M.; Zhang, M.; Li, R.; Peng, Z. B.; Zhao, Y. H. Construction of high-performance asymmetric supercapacitor based on the hierarchical Ni3S2/CoFe LDH/Ni foam hybrid. Appl. Surf. Sci. 2021, 561, 150049.

[53]

Yao, Y. S.; Yu, Y.; Wan, L.; Du, C.; Zhang, Y.; Chen, J.; Xie, M. J. Structurally-stable Mg-Co-Ni LDH grown on reduced graphene by ball-milling and ion-exchange for highly-stable asymmetric supercapacitor. J. Colloid Interface Sci. 2023, 649, 519–527.

Nano Research
Pages 8134-8144
Cite this article:
Su J, Yang L, Yu D, et al. Exploring the potential of constructing a hybrid supercapacitor with FeCoNi-LDH porous material containing oxygen vacancies for high-performance energy storage applications. Nano Research, 2024, 17(9): 8134-8144. https://doi.org/10.1007/s12274-024-6817-9
Topics:

333

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 March 2024
Revised: 08 June 2024
Accepted: 10 June 2024
Published: 15 July 2024
© Tsinghua University Press 2024
Return