AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

High-efficiency crystalline carbon nitride photocatalysts: Status and perspectives

Wenji Pu1,§Yunqiao Zhou3,§Lingfeng Yang1Haifeng Gong1Yuhan Li1( )Qingyu Yang2Dieqing Zhang2( )
Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

§ Wenji Pu and Yunqiao Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

This review summarizes the preparation methods, modified strategies, and applications of highly crystalline carbon nitride photocatalysts.

Abstract

Crystallinity and crystal structure greatly influence the photocatalytic behavior of photocatalysts. Pristine g-C3N4 produced by traditional thermal-induced polycondensation reaction bears low crystallinity and thus poor photoactivity, which originates from the incomplete polymerization of the precursor containing amine groups, abundant hydrogen bonds, and unreacted amino, as well as cyanide functional groups in the skeleton. During photocatalytic process, these residual functional groups often work as electron trap sites, which may hinder the transfer of electrons on the plane, resulting in low photoactivity. Fortunately, crystalline carbon nitride (CCN) was reported as a promising photocatalyst because its increased crystallinity not only reduces the number of carriers recombination centers, but also increases charge conductivity and improves light utilization due to extended π-conjugated systems and delocalized π-electrons. As such, we summarize the recent studies on CCN-based photocatalysts for the photoactivity enhancement. Firstly, the unique structure and properties of CCN materials are presented. Next, the preparation methods and modification strategies are well outlined. We also sum up the applications of CCN-based materials in the environmental purification and energy fields. Finally, this review concerning CNN materials ends with prospects and challenges in the obtainment of high crystallinity by effective techniques, and the deep understanding of photocatalytic mechanism.

References

[1]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[2]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[3]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[4]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[5]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, e2105904.

[6]

Panneri, S.; Ganguly, P.; Nair, B. N.; Mohamed, A. A. P.; Warrier, K. G. K.; Hareesh, U. N. S. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. Res. 2017, 24, 8609–8618.

[7]

Kou, C. L.; Tian, Y. Y.; Gao, L. L.; Lu, M. C.; Zhang, M.; Liu, H. Y.; Zhang, D. D.; Cui, X. Y.; Yang, W. S. Theoretical design of two-dimensional carbon nitrides. Nanotechnology. 2020, 31, 495707.

[8]

Zeng, Z. X.; Quan, X.; Yu, H. T.; Chen, S.; Zhang, Y. B.; Zhao, H. M.; Zhang, S. S. Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Appl. Catal. B: Environ. 2018, 236, 99–106.

[9]

Huang, T.; Fu, Y. S.; Peng, Q.; Yu, C. Y.; Zhu, J. W.; Yu, A. P.; Wang, X. Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Appl. Surf. Sci. 2019, 480, 888–895.

[10]

Zhao, T. T.; Zhou, Q.; Lv, Y. Q.; Han, D.; Wu, K. Q.; Zhao, L. F.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Ultrafast condensation of carbon nitride on electrodes with exceptional boosted photocurrent and electrochemiluminescence. Angew. Chem., Int. Ed. 2020, 59, 1139–1143.

[11]

Fan, Q. Q.; Su, J. N.; Sun, T.; Bi, Z. H.; Wang, H. S.; Zhang, S. S.; Liu, Q. J.; Zhang, L. Z.; Hu, G. Z. Advances of the functionalized carbon nitrides for electrocatalysis. Carbon Energy 2022, 4, 211–236.

[12]

Li, J. Q.; Qi, Y.; Mei, Y. Q.; Ma, S. C.; Li, Q.; Xin, B. F.; Yao, T. J.; Wu, J. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity. J. Colloid Interface Sci. 2020, 566, 495–504.

[13]

Zhang, G. Q.; Xu, Y. S.; Zhu, J. Y.; Li, Y. L.; He, C. X.; Ren, X. Z.; Zhang, P. X.; Mi, H. W. Enhanced photocatalytic H2 production independent of exciton dissociation in crystalline carbon nitride. Appl. Catal. B: Environ. 2023, 338, 123049.

[14]

Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983–999.

[15]

Lin, L. H.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.

[16]

Yang, Z. T.; Li, L. L.; Yu, H. Y.; Liu, M. N.; Chi, Y. H.; Sha, J. H.; Xu, S. P. Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal. Chemosphere. 2021, 271, 129503.

[17]

Tian, L.; Yang, X. F.; Liu, Q. Q.; Qu, F. Q.; Tang, H. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 455, 403–409.

[18]

Zhang, G. G.; Li, G. S.; Lan, Z. A.; Lin, L. H.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem., Int. Ed. 2017, 56, 13445–13449.

[19]

Merschjann, C.; Tschierlei, S.; Tyborski, T.; Kailasam, K.; Orthmann, S.; Hollmann, D.; Schedel-Niedrig, T.; Thomas, A.; Lochbrunner, S. Complementing graphenes: 1D interplanar charge transport in polymeric graphitic carbon nitrides. Adv. Mater. 2015, 27, 7993–7999.

[20]

Xing, W. N.; Tu, W. G.; Han, Z. H.; Hu, Y. D.; Meng, Q. Q.; Chen, G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. ACS Energy Lett. 2018, 3, 514–519.

[21]

Zhang, G. G.; Liu, M. H.; Heil, T.; Zafeiratos, S.; Savateev, A.; Antonietti, M.; Wang, X. C. Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angew. Chem., Int. Ed. 2019, 58, 14950–14954.

[22]

Xu, Y. S.; He, X.; Zhong, H.; Singh, D. J.; Zhang, L. J.; Wang, R. H. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 246, 349–355.

[23]

Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 2435–2439.

[24]

Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

[25]

Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.—Eur. J. 2008, 14, 8177–8182.

[26]

Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118381.

[27]

Li, H.; Zhu, B. C.; Cao, S. W.; Yu, J. G. Controlling defects in crystalline carbon nitride to optimize photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 5641–5644.

[28]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 6164–6175.

[29]

Da Silva, M. A. R.; Gil, J. C.; Tarakina, N. V.; Silva, G. T. S. T.; Filho, J. B. G.; Krambrock, K.; Antonietti, M.; Ribeiro, C.; Teixeira, I. F. Selective methane photooxidation into methanol under mild conditions promoted by highly dispersed Cu atoms on crystalline carbon nitrides. Chem. Commun. 2022, 58, 7419–7422.

[30]

Xia, P. F.; Cheng, B.; Jiang, J. Z.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342.

[31]

Kong, L. R.; Wang, J. C.; Ma, F. C.; Sun, M. T.; Quan, J. Graphitic carbon nitride nanostructures: Catalysis. Appl. Mater. Today 2019, 16, 388–424.

[32]

Wang, W.; Cui, J.; Sun, Z. Z.; Xie, L.; Mu, X. K.; Huang, L. M.; He, J. Q. Direct atomic-scale structure and electric field imaging of triazine-based crystalline carbon nitride. Adv. Mater. 2021, 33, 2106359.

[33]

Wang, Q.; Zhang, G. G.; Xing, W. D.; Pan, Z. M.; Zheng, D. D.; Wang, S. B.; Hou, Y. D.; Wang, X. C. Bottom-up synthesis of single-crystalline poly(triazine imide) nanosheets for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2023, 62, e202307930.

[34]

Liu, M. H.; Zhang, G. G.; Liang, X. C.; Pan, Z. M.; Zheng, D. D.; Wang, S. B.; Yu, Z. Y.; Hou, Y. D.; Wang, X. C. Rh/Cr2O3 and CoO x cocatalysts for efficient photocatalytic water splitting by poly(triazine Imide) crystals. Angew. Chem., Int. Ed. 2023, 62, e202304694.

[35]

Zeng, Z. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, S. S. Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 227, 153–160.

[36]

Zhou, M.; Yang, P. J.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols. ChemSusChem. 2017, 10, 4451–4456.

[37]

Wang, C.; Xiao, H. X.; Lu, Y. C.; Lv, J. L.; Yuan, Z. H.; Cheng, J. J. Regulation of polymerization kinetics to improve crystallinity of carbon nitride for photocatalytic reactions. ChemSusChem. 2023, 16, e202300361.

[38]

Wu, Z. W.; Wang, B.; Zhu, Y. A.; Xue, J. M.; Nie, Y. D.; Xie, Z. B.; Le, Z. G. Synthesis of crystalline carbon nitride with molten salt thermal treatment for efficient photocatalytic reduction and removal of U(VI). Res. Chem. Intermed. 2023, 49, 1801–1817.

[39]

Xu, Z.; Shi, Y. X.; Li, L. L.; Sun, H. R.; Amin, M. D. S.; Guo, F.; Wen, H. B.; Shi, W. L. Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 2022, 895, 162667.

[40]

Xia, P. F.; Antonietti, M.; Zhu, B. C.; Heil, T.; Yu, J. G.; Cao, S. W. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 2019, 29, 1900093.

[41]

Ren, W.; Cheng, J. J.; Ou, H. H.; Huang, C. J.; Titirici, M. M.; Wang, X. C. Enhancing visible-light hydrogen evolution performance of crystalline carbon nitride by defect engineering. ChemSusChem 2019, 12, 3257–3262.

[42]

Wang, J. H.; Shen, Y. F.; Li, Y.; Liu, S. Q.; Zhang, Y. J. Crystallinity modulation of layered carbon nitride for enhanced photocatalytic activities. Chem.—Eur. J. 2016, 22, 12449–12454.

[43]

Iqbal, W.; Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl. Catal. B: Environ. 2018, 232, 306–313.

[44]

Cheng, J. S.; Hu, Z.; Lv, K. L.; Wu, X. F.; Li, Q.; Li, Y. H.; Li, X. F.; Sun, J. Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Appl. Catal. B: Environ. 2018, 232, 330–339.

[45]

Huang, S. Q.; Xu, Y. G.; Ge, F. Y.; Tian, D.; Zhu, X. W.; Xie, M.; Xu, H.; Li, H. M. Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 556, 324–334.

[46]

Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Appl. Catal. B: Environ. 2018, 238, 592–598.

[47]

Chong, S. Y.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.; Thomas, A.; Antonietti, M.; Bojdys, M. J. Tuning of gallery heights in a crystalline 2D carbon nitride network. J. Mater. Chem. A 2013, 1, 1102–1107.

[48]

Xu, W. M.; An, X. H.; Zhang, Q. G.; Li, Z.; Zhang, Q. H.; Yao, Z.; Wang, X. K.; Wang, S.; Zheng, J. T.; Zhang, J. et al. Cesium salts as mild chemical scissors to trim carbon nitride for photocatalytic H2 evolution. ACS Sustain. Chem. Eng. 2019, 7, 12351–12357.

[49]

Wang, W. B.; Shu, Z.; Zhou, J.; Meng, D. W. Alkali-assisted deep-deamination to improve the crystallinity of poly(heptazine imide) for boosted photocatalytic H2 evolution. Sep. Purif. Technol. 2023, 318, 124027.

[50]

Wang, W.; Fang, J, J. Mesoporous SiO2-derived g-C3N4@CdS core–shell heteronanostructure for efficient and stable photocatalytic H2 production. Ceram. Int 2020, 46, 2384–2391.

[51]

Guo, Y. F.; Li, J.; Yuan, Y. P.; Li, L.; Zhang, M. Y.; Zhou, C. Y.; Lin, Z. Q. A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 14693–14697.

[52]

Wang, Y. F.; Jing, B. H.; Wang, F. L.; Wang, S. C.; Liu, X.; Ao, Z. M.; Li, C. H. Mechanism insight into enhanced photodegradation of pharmaceuticals and personal care products in natural water matrix over crystalline graphitic carbon nitrides. Water Res. 2020, 180, 115925.

[53]

Yuan, Y. T.; Wang, T.; Chen, H.; Mahurin, S. M.; Luo, H. M.; Veith, G. M.; Yang, Z. Z.; Dai, S. Ambient temperature graphitization based on mechanochemical synthesis. Angew. Chem., Int. Ed. 2020, 59, 21935–21939.

[54]

Li, J. X.; Wang, Y. H.; Li, X. C.; Gao, Q. Q.; Zhang, S. D. A facile synthesis of high-crystalline g-C3N4 nanosheets with closed self-assembly strategy for enhanced photocatalytic H2 evolution. J. Alloys Compd. 2021, 881, 160551.

[55]

Ji, T. S.; Guo, Y. Z.; Liu, H. L.; Chang, B. B.; Wei, X. F.; Yang, B. C. Growth of narrow-bandgap Cl-doped carbon nitride nanofibers on carbon nitride nanosheets for high-efficiency photocatalytic H2O2 generation. RSC Adv. 2021, 11, 31385–31394.

[56]

Yu, Z. H.; Guan, C.; Yue, X. Y.; Xiang, Q. J. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution. Chin. J. Catal. 2023, 50, 361–371.

[57]

Praus, P. On electronegativity of graphitic carbon nitride. Carbon. 2021, 172, 729–732.

[58]

Luo, M. M.; Jiang, G. J.; Yu, M.; Yan, Y. P.; Qin, Z. J.; Li, Y.; Zhang, Q. Constructing crystalline homophase carbon nitride S-scheme heterojunctions for efficient photocatalytic hydrogen evolution. J. Mater. Sci. Technol. 2023, 161, 220–232.

[59]

Ruban, S. M.; Ramadass, K.; Singh, G.; Talapaneni, S. N.; Kamalakar, G.; Gadipelly, C. R.; Mannepalli, L. K.; Sugi, Y.; Vinu, A. Organocatalysis with carbon nitrides. Sci. Technol. Adv. Mater. 2023, 24, 2188879.

[60]

Ma, X.; Cheng, H. F. Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Appl. Catal. B: Environ. 2023, 339, 123101.

[61]

Li, X. Y.; Wu, J. M.; An, S. F.; Li, K. Y.; Zhang, J. X.; Pei, M. J.; Song, C. S.; Guo, X. W. Ultrathin crystalline carbon nitride nanosheets for highly efficient photocatalytic pollutant removal and hydrogen production. ACS Appl. Nano Mater. 2023, 6, 11601–11611.

[62]

Song, H. M.; Liu, X. M.; Wang, Y. X.; Chen, L.; Zhang, J. Q.; Zhao, C. C.; He, F. T.; Dong, P.; Li, B.; Wang, S. J. et al. Synergy of intermolecular donor–acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1603–1612.

[63]

You, Z. Y.; Su, Y. X.; Yu, Y.; Wang, H.; Qin, T.; Zhang, F.; Shen, Q. H.; Yang, H. Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities. Appl. Catal. B: Environ. 2017, 213, 127–135.

[64]

Song, J.; Liu, X. L.; Zhang, C. Y.; Cui, Z. H.; Zhang, Q. Q.; Qin, X. S.; Wang, Z. Y.; Zheng, Z. K.; Liu, Y. Y.; Cheng, H. F. et al. Highly crystalline carbon nitride with small-sized sea urchin-like structure for efficient photocatalytic hydrogen production under visible-light irradiation. Today Commun. 2022, 33, 104431.

[65]

Li, Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636.

[66]

Du, J. Y.; Fan, Y. F.; Gan, X. R.; Dang, X. M.; Zhao, H. M. Three-dimension branched crystalline carbon nitride: A high efficiency photoelectrochemical sensor of trace Cu2+ detection. Electrochim. Acta. 2020, 330, 135336.

[67]

Guo, H.; Niu, C. G.; Liang, C.; Niu, H. Y.; Yang, Y. Y.; Liu, H. Y.; Tang, N.; Fang, H. X. Highly crystalline porous carbon nitride with electron accumulation capacity: Promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation. Chem. Eng. J. 2021, 409, 128030.

[68]

Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

[69]

Lin, L. H.; Wang, C.; Ren, W.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 2017, 8, 5506–5511.

[70]

Wang, Q.; Guo, Q. J.; Hu, Y. H.; Li, B. High-quality spinel LiCoTiO4 single crystals with co-exposed {111} and {110} facets: Flux growth, formation mechanism, magnetic behavior and their application in photocatalysis. CrystEngComm 2016, 18, 6926–6933.

[71]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[72]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[73]

Ou, H. H.; Li, G. S.; Ren, W.; Pan, B. J.; Luo, G. H.; Hu, Z. F.; Wang, D. S.; Li, Y. D. Atomically dispersed Au-assisted C–C coupling on red phosphorus for CO2 photoreduction to C2H6. J. Am. Chem. Soc. 2022, 144, 22075–22082.

[74]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[75]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[76]

Wang, Y. J.; Xie, D. J.; Wang, G.; Wu, Y. S.; Shi, R.; Zhou, C.; Meng, X. F.; Zhang, T. R. Single-atomic Co-N4-O site boosting exciton dissociation and hole extraction for improved photocatalytic hydrogen evolution in crystalline carbon nitride. Nano Energy 2022, 104, 107938.

[77]

Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

[78]

Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

[79]

Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

[80]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[81]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[82]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[83]

Cheng, L.; Zhang, P.; Wen, Q. Y.; Fan, J. J.; Xiang, Q. J. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 451–460.

[84]

Shen, S. H.; Chen, J.; Wang, Y. Q.; Dong, C. L.; Meng, F. Q.; Zhang, Q. H.; Huangfu, Y. L.; Lin, Z.; Huang, Y. C.; Li, Y. R. et al. Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Sci. Bull. 2022, 67, 520–528.

[85]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[86]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[87]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[88]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[89]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano- to atomically dispersed catalytic materials. Small Science 2022, 2, 2200036.

[90]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[91]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[92]

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

[93]

Gorai, P.; Ertekin, E.; Seebauer, E. G. Surface-assisted defect engineering of point defects in ZnO. Appl. Phys. Lett. 2016, 108, 241603.

[94]

Liu, X.; Jing, B. H.; Lun, G. Q.; Wang, Y. F.; Wang, X. D.; Fang, C.; Ao, Z. M.; Li, C. H. Integrating nitrogen vacancies into crystalline graphitic carbon nitride for enhanced photocatalytic hydrogen production. Chem. Commun. 2020, 56, 3179–3182.

[95]

Zhu, J. Y.; Zhang, G. Q.; Xu, Y. S.; Huang, W.; He, C. X.; Zhang, P. X.; Mi, H. W. Cyanamide-defect-induced built-in electric field in crystalline carbon nitride for enhanced visible to near-infrared light photocatalytic activity. Inorg. Chem. Front. 2022, 9, 4320–4328.

[96]

Shao, Y. F.; Hao, X. Q.; Lu, S. D.; Jin, Z. L. Molten salt-assisted synthesis of nitrogen-vacancy crystalline graphitic carbon nitride with tunable band structures for efficient photocatalytic overall water splitting. Chem. Eng. J. 2023, 454, 140123.

[97]

Liu, Z. G.; Wu, S. Q.; Li, M. Y.; Zhang, J. L. Selective photocatalytic CO2 reduction to CH4 on tri-s-triazine-based carbon nitride via defects and crystal regulation: Synergistic effect of thermodynamics and kinetics. ACS Appl. Mater. Interfaces 2022, 14, 25417–25426.

[98]

Jiang, Y. R.; Yan, X. M.; Fu, X. L.; Gu, Q. Enhanced visible-light-driven co-production of H2 and value-added chemicals over AgCl/crystalline carbon nitride with N defects. Colloid Interface Sci. Commun. 2022, 48, 100627.

[99]

Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Wang, L.; Wang, X. J.; Yan, W.; Peng, S. J.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B: Environ. 2019, 257, 117855.

[100]

Wang, Y. Q.; Zhou, X.; Xu, W.; Sun, Y.; Wang, T. T.; Zhang, Y.; Dong, J. J.; Hou, W. T.; Wu, N. D.; Wu, L. Q. et al. Zn-doped tri-s-triazine crystalline carbon nitrides for efficient hydrogen evolution photocatalysis. Appl. Catal. A: Gen. 2019, 582, 117118.

[101]

Seitz, J. M.; Utermöhlen, D.; Wulf, E.; Klose, C.; Bach, F. W. The manufacture of resorbable suture material from magnesium-drawing and stranding of thin wires. Adv. Eng. Mater. 2011, 13, 1087–1095.

[102]

Zhu, J. N.; Zhu, X. Q.; Cheng, F. F.; Li, P.; Wang, F.; Xiao, Y. W.; Xiong, W. W. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis. Appl. Catal. B: Environ. 2019, 256, 117830.

[103]

Cui, Y. J.; Li, X.; Yang, C. F.; Xiao, B. B.; Xu, H. Y. K-I co-doped crystalline carbon nitride with outstanding visible light photocatalytic activity for H2 evolution. Int. J. Hydrog. Energy 2022, 47, 12569–12581.

[104]

Liu, Z. D.; Ma, J. L.; Hong, M.; Sun, R. C. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS Catal. 2023, 13, 2106–2117.

[105]

Liao, Z. H.; Li, C. X.; Shu, Z.; Zhou, J.; Li, T. T.; Wang, W. B.; Zhao, Z. L.; Xu, L. N.; Shi, L. L.; Feng, L. L. K-Na co-doping in crystalline polymeric carbon nitride for highly improved photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2021, 46, 26318–26328.

[106]

Chen, Y. F.; Yan, X. M.; Xu, J. X.; Wang, L. K+, Ni and carbon co-modification promoted two-electron O2 reduction for photocatalytic H2O2 production by crystalline carbon nitride. J. Mater. Chem. A 2021, 9, 24056–24063.

[107]

Cheng, Y. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Du, Y. C.; Askari, N.; Liu, N. Y.; Qiao, F.; Sun, C. H. et al. A core–satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Res. 2022, 15, 8880–8889.

[108]

Yu, Z. H.; Yue, X. Y.; Fan, J. J.; Xiang, Q. J. Crystalline intramolecular ternary carbon nitride homojunction for photocatalytic hydrogen evolution. ACS Catal. 2022, 12, 6345–6358.

[109]

Xia, Y.; Tian, Z. H.; Heil, T.; Meng, A. Y.; Cheng, B.; Cao, S. W.; Yu, J. G.; Antonietti, M. Highly selective CO2 capture and its direct photochemical conversion on ordered 2D/1D heterojunctions. Joule 2019, 3, 2792–2805.

[110]

Li, F.; Yue, X. Y.; Liao, Y. L.; Qiao, L.; Lv, K. L.; Xiang, Q. J. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat. Commun. 2023, 14, 3901.

[111]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[112]

Li, Y. P.; He, J. Y.; Wang, X. J.; Zhao, J.; Liu, R. H.; Liu, Y.; Li, F. T. Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency. Appl. Surf. Sci. 2021, 559, 149876.

[113]

Qin, M. L.; Chen, L. L.; Zhang, H. M.; Humayun, M.; Fu, Y. J.; Xu, X. F.; Xue, X. Y.; Wang, C. D. Achieving highly efficient pH-universal hydrogen evolution by Mott–Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230.

[114]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[115]

Zhang, J. Y.; Li, Z. L.; Li, J. L.; He, Y. L.; Tong, H. J.; Li, S.; Chai, Z. L.; Lan, K. Construction of type-II heterojunctions in crystalline carbon nitride for efficient photocatalytic H2 evolution. Nanomaterials 2023, 13, 2300.

[116]

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

[117]

Cheng, L.; Yue, X. Y.; Fan, J. J.; Xiang, Q. J. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv. Mater. 2022, 34, 2200929.

[118]

Jia, Q. H.; Zhang, S. F.; Gu, Q. C–C formation mediated by photoinduced electrons from crystallized carbon nitride nanobelts under visible light irradiation. J. Energy Chem. 2019, 30, 152–161.

[119]

Chen, F.; Yang, H.; Luo, W.; Wang, P.; Yu, H. G. Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1990–1998.

[120]

Chen, F.; Yang, H.; Wang, X. F.; Yu, H. G. Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts. Chin. J. Catal. 2017, 38, 296–304.

[121]

Chen, H. X.; Zhu, X. L.; Zong, H. B.; Zeng, G. X.; Miao, H. H.; Mo, Z.; Hossain, M. S.; Yan, J.; Wang, L.; Xu, H. Strongly coupled NH2NH-modified high crystallinity graphene quantum dots/carbon nitride for efficient photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2023, 48, 36818–36824.

[122]

Dante, R. C. Water photolysis by carbon nitride. Int. J. Hydrog. Energy 2019, 44, 21030–21036.

[123]

Lin, L. H.; Ren, W.; Wang, C.; Asiri, A. M.; Zhang, J.; Wang, X. C. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Appl. Catal. B: Environ. 2018, 231, 234–241.

[124]

Wang, S.; He, P.; Jia, L. P.; He, M. Q.; Zhang, T. H.; Dong, F. Q.; Liu, M. Z.; Liu, H. H.; Zhang, Y.; Li, C. X. et al. Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: A highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B: Environ. 2019, 243, 463–469.

[125]

Niu, P.; Li, L. Overall photocatalytic water splitting of crystalline carbon nitride with facet engineering. Chem 2020, 6, 2439–2441.

[126]

Yan, B.; Chen, Z. H.; Xu, Y. X. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem. Asian J. 2020, 15, 2329–2340.

[127]

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

[128]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

[129]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[130]

Li, C. M.; Yu, S. Y.; Zhang, X. X.; Wang, Y.; Liu, C. B.; Chen, G.; Dong, H. J. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water. J. Colloid Interface Sci. 2019, 538, 462–473.

[131]

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ. 2016, 185, 225–232.

[132]

Zheng, Q. M.; Durkin, D. P.; Elenewski, J. E.; Sun, Y. X.; Banek, N. A.; Hua, L. K.; Chen, H. N.; Wagner, M. J.; Zhang, W.; Shuai, D. M. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment. Environ. Sci. Technol. 2016, 50, 12938–12948.

[133]

Gu, Z. Y.; Cui, Z. T.; Wang, Z. J.; Chen, T. R.; Sun, P.; Wen, D. W. Synthesis of crystalline carbon nitride with enhanced photocatalytic NO removal performance: An experimental and DFT theoretical study. J. Mater. Sci. Technol. 2021, 83, 113–122.

[134]

Shvalagin, V.; Kuchmiy, S.; Skoryk, M.; Bondarenko, M.; Khyzhun, O. Acid treated crystalline graphitic carbon nitride with improved efficiency in photocatalytic ethanol oxidation under visible light. Mater. Sci. Eng.: B 2021, 271, 115304.

[135]

Kong, X. Y.; Cao, L. W.; Shi, Y. X.; Chen, Z. Z.; Shi, W. L.; Du, X. Construction of S-scheme 2D/2D crystalline carbon nitride/BiOIO3 van der Waals heterojunction for boosted photocatalytic degradation of antibiotics. Molecules 2023, 28, 5098.

[136]

Huang, W. J.; Ming, H. B.; Bian, X. Q.; Yang, C.; Hou, Y. D.; Ding, K. N.; Zhang, J. S. Copper single atoms incorporated in crystalline carbon nitride for efficient photocatalytic activation of peroxymonosulfate toward bisphenol a removal with visible light. Chem. Eng. J. 2023, 473, 145230.

[137]

Lin, Z.; Wang, Y. Q.; Thi Thuy Nga, T.; Zhang, J.; Wang, R. Z.; Zhang, Z. Q.; Xu, Y. F.; Zhao, D. M.; Dong, C. L.; Shen, S. H. Electron-rich pyrimidine rings enabling crystalline carbon nitride for high-efficiency photocatalytic hydrogen evolution coupled with benzyl alcohol selective oxidation. EES Catal. 2023, 1, 552–561.

[138]

Wang, X. Y.; Tang, W. W.; Jiang, L. B.; Feng, J.; Yang, J. J.; Zhou, S. Y.; Li, W. Q.; Yuan, X. Z.; Wang, H.; Wang, J. J. et al. Mechanism insights into visible light-induced crystalline carbon nitride activating periodate for highly efficient ciprofloxacin removal. Chem. Eng. J. 2023, 471, 144521.

[139]

Xu, Z. X.; Li, Y.; Cao, Y. Y.; Du, R. F.; Bao, Z. K.; Zhang, S. J.; Shao, F. J.; Ji, W. K.; Yang, J.; Zhuang, G. L. et al. Trace water triggers high-efficiency photocatalytic hydrogen peroxide production. J. Energy Chem. 2022, 64, 47–54.

[140]

Fattahimoghaddam, H.; Mahvelati-Shamsabadi, T.; Lee, B. K. Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: A collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustain. Chem. Eng. 2021, 9, 4520–4530.

[141]

Guo, Z. W.; Li, B. R.; Xu, M.; Li, Y.; Yan, Y. S.; Da, Z. L. Crystallinity and thickness modulation of polymeric carbon nitride by dual-functional lithium ions for boosting photocatalytic H2O2 production. Appl. Surf. Sci. 2022, 606, 154733.

[142]

Sharma, P.; Slater, T. J. A.; Sharma, M.; Bowker, M.; Catlow, C. R. A. Enhanced H2O2 production via photocatalytic O2 reduction over structurally-modified poly(heptazine imide). Chem. Mater. 2022, 34, 5511–5521.

[143]

Yang, Z. C.; Li, L. N.; Zeng, S. Q.; Cui, J. H.; Wang, K.; Hu, C.; Zhao, Y. B. Nanoarchitecture manipulation by polycondensation on KCl crystals toward crystalline lamellar carbon nitride for efficient H2O2 photoproduction. ACS Appl. Mater. Interfaces 2023, 15, 8232–8240.

[144]

Zheng, M.; Cai, X.; Li, Y.; Ding, K. N.; Zhang, Y. F.; Chen, W. K.; Sun, C. H.; Lin, W. Catalytic mechanism and activity of N2 reduction on boron-decorated crystalline carbon nitride. 2D Mater. 2022, 9, 045035.

[145]

Zhu, Y. X.; Zhong, X.; Jia, X. T.; Sun, Q. F.; Yao, J. F. Geometry-tunable sulfur-doped carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation. Chem. Eng. J. 2022, 431, 133412.

[146]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[147]

Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.

[148]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[149]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[150]

Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

[151]

Pauly, M.; White, E.; Deegbey, M.; Fosu, E. A.; Keller, L.; Mcguigan, S.; Dianat, G.; Gabilondo, E.; Wong, J. C.; Murphey, C. G. E. et al. Coordination of copper within a crystalline carbon nitride and its catalytic reduction of CO2. Dalton Trans. 2024, 53, 6779–6790.

[152]

Foy, D.; Demazeau, G.; Florian, P.; Massiot, D.; Labrugère, C.; Goglio, G. Modulation of the crystallinity of hydrogenated nitrogen-rich graphitic carbon nitrides. J. Solid State Chem. 2009, 182, 165–171.

[153]

Kundoo, S.; Banerjee, A. N.; Saha, P.; Chattopadhyay, K. K. Synthesis of crystalline carbon nitride thin films by electrolysis of methanol-urea solution. Mater. Lett. 2003, 57, 2193–2197.

[154]

Sharma, A. K.; Ayyub, P.; Multani, M. S.; Adhi, K. P.; Ogale, S. B.; Sunderaraman, M.; Upadhyay, D. D.; Banerjee, S. Synthesis of crystalline carbon nitride thin films by laser processing at a liquid–solid interface. Appl. Phys. Lett. 1996, 69, 3489–3491.

Nano Research
Pages 7840-7863
Cite this article:
Pu W, Zhou Y, Yang L, et al. High-efficiency crystalline carbon nitride photocatalysts: Status and perspectives. Nano Research, 2024, 17(9): 7840-7863. https://doi.org/10.1007/s12274-024-6818-8
Topics:

433

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 April 2024
Revised: 21 May 2024
Accepted: 10 June 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return