AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulating photocatalytic overall water splitting of ferroelectric heterostructures by size effect

Zixing Ye1Daifu Yu2Ruian Zhang1Fei Qin2Yiran Sun1Jie Huang2Zhanqi Zhou3He Tian3( )Gaorong Han1Zhaohui Ren1( )Gang Liu2( )
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

A size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO3/PbTiO3 nanoplate heterostructures was realized by a polarization screening. An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of single-domain ferroelectric PbTiO3 nanoplate increases from 30 to 107 nm.

Abstract

In the past decade, ferroelectric materials have been intensively explored as promising photocatalysts. An intriguing ability of ferroelectrics is to directly sperate the photogenerated electrons and holes, which is believed to arise from a spontaneous polarization. Understanding how polarization affects the photocatalytic performance is vital to design high-efficiency photocatalysts. In this work, we report a size effect of ferroelectric polarization on regulating the photocatalytic overall water splitting of SrTiO3/PbTiO3 nanoplate heterostructures for the first time. This was realized hydrothermally by controlling the thickness and thus spontaneous polarization strength of single-crystal and single-domain PbTiO3 nanoplates, which served as the substrate for selective heteroepitaxial growth of SrTiO3. An enhancement of 22 times in the photocatalytic overall water splitting performance of the heterostructures has been achieved when the average thickness of the nanoplate increases from 30 to 107 nm. A combined experimental investigation revealed that the incompletely compensated depolarization filed is the dominated driving force for the photogenerated carrier separation within heterostructures, and its increase with the thickness of the nanoplates accounts for the enhancement of photocatalytic activity. Moreover, the concentration of oxygen vacancies for negative polarization compensation has been found to grow as the thickness of the nanoplates increases, which promotes oxygen evolution reaction and reduces the stoichiometric ratio of H2/O2. These findings may provide the opportunity to design and develop high-efficiency ferroelectric photocatalysts.

Electronic Supplementary Material

Download File(s)
6819_ESM.pdf (842.6 KB)

References

[1]

Jafari, T.; Moharreri, E.; Amin, A. S.; Miao, R.; Song, W. Q.; Suib, S. L. Photocatalytic water splitting-the untamed dream: A review of recent advances. Molecules 2016, 21, 900.

[2]

Molaei, M. J. Recent advances in hydrogen production through photocatalytic water splitting: A review. Fuel 2024, 365, 131159.

[3]

Qi, Y.; Zhao, Y.; Gao, Y. Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018, 2, 2393–2402.

[4]

Ng, B. J.; Putri, L. K.; Kong, X. Y.; Teh, Y. W.; Pasbakhsh, P.; Chai, S. P. Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. 2020, 7, 1903171.

[5]

Kim, H. G.; Borse, P. H.; Jang, J. S.; Jeong, E. D.; Jung, O. S.; Suh, Y. J.; Lee, J. S. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun. 2009, 2009, 5889–5891.

[6]

Chen, S. F.; Zhao, W.; Liu, W.; Zhang, S. J. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO. J. Sol-Gel Sci. Technol. 2009, 50, 387–396.

[7]

Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463–2469.

[8]

Dong, B. X.; Ma, X. D.; Liu, T. S.; Li, Q.; Yang, H. Y.; Shu, S. L.; Zhang, B. Q.; Qiu, F.; Jiang, Q. C. Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. J. Am. Ceram. Soc. 2021, 104, 2820–2835.

[9]

Liu, Y.; Ye, S.; Xie, H. C.; Zhu, J.; Shi, Q.; Ta, N.; Chen, R. T.; Gao, Y. Y.; An, H. Y.; Nie, W. et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 2020, 32, 1906513.

[10]

Shi, J. W.; Guo, L. J. ABO3-based photocatalysts for water splitting. Prog. Nat. Sci.: Mater. Int. 2012, 22, 592–615.

[11]

Liu, L. Z.; Huang, H. W. Ferroelectrics in photocatalysis. Chem. —Eur. J. 2022, 28, e202103975.

[12]

Zhen, C.; Yu, J. C.; Liu, G.; Cheng, H. M. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates. Chem. Commun. 2014, 50, 10416–10419.

[13]

Ren, Z. H.; Wu, M. J.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J. Z.; Xie, Y. W.; Mai, J. Q. et al. Electrostatic force-driven oxide heteroepitaxy for interface control. Adv. Mater. 2018, 30, 1707017.

[14]

Li, W.; Wang, F.; Li, M.; Chen, X.; Ren, Z. H.; Tian, H.; Li, X.; Lu, Y. H.; Han, G. R. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures. Nano Energy 2018, 45, 304–310.

[15]

Wan, G. D.; Yin, L. C.; Chen, X.; Xu, X. X.; Huang, J.; Zhen, C.; Zhu, H. Z.; Huang, B. H.; Hu, W. J.; Ren, Z. H. et al. Photocatalytic overall water splitting over PbTiO3 modulated by oxygen vacancy and ferroelectric polarization. J. Am. Chem. Soc. 2022, 144, 20342–20350.

[16]

Ren, Z. H.; Ruan, L. Y.; Yin, L. C.; Akkiraju, K.; Giordano, L.; Liu, Z. R.; Li, S.; Ye, Z. X.; Li, S. D.; Yang, H. S. et al. Surface oxygen vacancies confined by ferroelectric polarization for tunable CO oxidation kinetics. Adv. Mater. 2022, 34, 2202072.

[17]

Liu, G.; Ma, L.; Yin, L. C.; Wan, G. D.; Zhu, H. Z.; Zhen, C.; Yang, Y. Q.; Liang, Y.; Tan, J.; Cheng, H. M. Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2018, 2, 1095–1107.

[18]

Wan, G. D.; Yang, Y. Q.; Zhu, H. Z.; Zhen, C.; Xu, X. X.; Wang, L. Z.; Liu, G. Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution. Sci. China Mater. 2022, 65, 3428–3434.

[19]

Guo, L. M.; Zhong, C. F.; Cao, J. Q.; Hao, Y. N.; Lei, M.; Bi, K.; Sun, Q. J.; Wang, Z. L. Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 2019, 62, 513–520.

[20]

Li, Q. N.; Xia, Y. G.; Wei, K. L.; Ding, X. T.; Dong, S.; Jiao, X. L.; Chen, D. R. Ferroelectric enhanced Z-scheme P-doped g-C3N4/PANI/BaTiO3 ternary heterojunction with boosted visible-light photocatalytic water splitting. New J. Chem. 2019, 43, 6753–6764.

[21]

Park, S.; Lee, C. W.; Kang, M. G.; Kim, S.; Kim, H. J.; Kwon, J. E.; Park, S. Y.; Kang, C. Y.; Hong, K. S.; Nam, K. T. A ferroelectric photocatalyst for enhancing hydrogen evolution: Polarized particulate suspension. Phys. Chem. Chem. Phys. 2014, 16, 10408–10413.

[22]

Xu, D. B.; Li, L. L.; Xia, T.; Fan, W. Q.; Wang, F. G.; Bai, H. Y.; Shi, W. D. Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting. Int. J. Hydrogen Energy 2018, 43, 16566–16572.

[23]

Yang, Y. X.; Kang, L.; Li, H. Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping. Ceram. Int. 2019, 45, 8017–8022.

[24]

Guo, Y. H.; Zhou, S. H.; Sun, X. K.; Yuan, H. L. Synthesis and photocatalytic activity of BiFeO3 and Bi/BiFeO3 cubic microcrystals. J. Am. Ceram. Soc. 2020, 103, 4122–4128.

[25]

Cui, Y. F.; Briscoe, J.; Dunn, S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-influence on the carrier separation and stern layer formation. Chem. Mater. 2013, 25, 4215–4223.

[26]

Dubey, A.; Keat, C. H.; Shvartsman, V. V.; Yusenko, K. V.; Castillo, M. E.; Buzanich, A. G.; Hagemann, U.; Kovalenko, S. A.; Stähler, J.; Lupascu, D. C. Mono-, di-, and tri-valent cation doped BiFe0.95Mn0.05O3 nanoparticles: Ferroelectric photocatalysts. Adv. Funct. Mater. 2022, 32, 2207105.

[27]

Fong, D. D.; Stephenson, G. B.; Streiffer, S. K.; Eastman, J. A.; Auciello, O.; Fuoss, P. H.; Thompson, C. Ferroelectricity in ultrathin perovskite films. Science 2004, 304, 1650–1653.

[28]

Polking, M. J.; Han, M. G.; Yourdkhani, A.; Petkov, V.; Kisielowski, C. F.; Volkov, V. V.; Zhu, Y.; Caruntu, G.; Paul Alivisatos, A.; Ramesh, R. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 2012, 11, 700–709.

[29]

Chao, C. Y.; Ren, Z. H.; Zhu, Y. H.; Xiao, Z.; Liu, Z. Y.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. R. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. Angew. Chem. 2012, 124, 9417–9421.

[30]

Burns, G.; Scott, B. A. Lattice modes in ferroelectric perovskites: PbTiO3. Phys. Rev. B. 1973, 7, 3088–3101.

[31]

Ren, Z. H.; Zhao, R. Y.; Chen, X.; Li, M.; Li, X.; Tian, H.; Zhang, Z.; Han, G. R. Mesopores induced zero thermal expansion in single-crystal ferroelectrics. Nat. Commun. 2018, 9, 1638.

[32]

Maeda, K.; Sakamoto, N.; Ikeda, T.; Ohtsuka, H.; Xiong, A. K.; Lu, D. L.; Kanehara, M.; Teranishi, T.; Domen, K. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chem. —Eur. J. 2010, 16, 7750–7759.

[33]

Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. 2006, 118, 7970–7973.

[34]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[35]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[36]

Chen, J. L.; Zhang, Z. J.; Luo, L.; Lu, Y. H.; Song, C.; Cheng, D.; Chen, X.; Li, W.; Ren, Z. H.; Wang, J. G. et al. Reversible magnetism transition at ferroelectric oxide heterointerface. Sci. Bull. 2020, 65, 2094–2099.

[37]

Du, P. P.; Huang, J.; Ye, Z. X.; Zhen, C.; Liu, J. N.; Yang, Y.; Ren, Z. H.; Yin, L. C.; Wang, L. Z.; Liu, G. Reconstructing ferroelectric polarization screening of PbTiO3 by epitaxial SrTiO3 for efficient photocatalytic overall water splitting. Adv. Funct. Mater., 2024, 34, 2312888.

[38]

Chiesa, M.; Livraghi, S.; Giamello, E.; Albanese, E.; Pacchioni, G. Ferromagnetic interactions in highly stable, partially reduced TiO2: The S=2 state in anatase. Angew. Chem., Int. Ed. 2017, 56, 2604–2607.

[39]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[40]

Cai, J. M.; Cao, A.; Huang, J. J.; Jin, W. F.; Zhang, J.; Jiang, Z.; Li, X. G. Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 267, 118378.

[41]

Lin, C.; Zhang, Z. J.; Dai, Z. B.; Wu, M. J.; Liu, S.; Chen, J. L.; Hua, C. Q.; Lu, Y. H.; Zhang, F.; Lou, H. B. et al. Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current. Nat. Commun. 2023, 14, 2341.

Nano Research
Pages 8000-8006
Cite this article:
Ye Z, Yu D, Zhang R, et al. Regulating photocatalytic overall water splitting of ferroelectric heterostructures by size effect. Nano Research, 2024, 17(9): 8000-8006. https://doi.org/10.1007/s12274-024-6819-7
Topics:

476

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 May 2024
Revised: 08 June 2024
Accepted: 10 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return