AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Photophysics of halide perovskite nanocrystal quantum dots

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Show Author Information

Graphical Abstract

Abstract

Here I provide a summary of my group’s research on the photophysics of nanocrystal quantum dots and briefly discuss multipeak luminescence structures related to excitons, trions, and biexcitons in halide perovskite nanocrystals.

References

[1]

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 1981, 34, 363–366.

[2]

Ekimov, A. I.; Onushchehko, A. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. Phys. Semicond. 1982, 16, 775–778.

[3]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[4]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[5]

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[6]

Brus, L. E.; Efros, A. L.; Itoh, T. Spectroscopy of isolated and assembled semiconductor nanocrystals. J. Lumin. 1996, 70, 1–484.

[7]

Éfros, A. L.; Éfros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982, 16, 772–775.

[8]

Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 1988, 38, 9797–9805.

[9]

Sercel, P. C.; Lyons, J. L.; Bernstein, N.; Efros, A. L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 2019, 151, 234106.

[10]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[11]

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

[12]
Ueta, M.; Kanzaki, H.; Kobayashi, K.; Toyozawa, Y.; Hanamura, E. Excitonic Processes in Solids; Springer: Berlin, 1986.
[13]

Itoh, T.; Kirihara, T. Excitons in CuCl microcrystals embedded in NaCl. J. Lumin. 1984, 3132, 120–122.

[14]

Itoh, T.; Iwabuchi, Y.; Kataoka, M. Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement. Phys. Status Solidi (B) 1988, 145, 567–577.

[15]

Itoh, T.; Iwabuchi, Y.; Kirihara, T. Size-quantized excitons in microcrystals of cuprous halides embedded in alkali-halide matrices. Phys. Status Solidi (B) 1988, 146, 531–543.

[16]

Itoh, T.; Furumiya, M.; Ikehara, T.; Gourdon, C. Size-dependent radiative decay time of confined excitons in CuCl microcrystals. Solid State Commun. 1990, 73, 271–274.

[17]

Hanamura, E. Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B 1988, 37, 1273–1279.

[18]

Kataoka, T.; Tokizaki, T.; Nakamura, A. Mesoscopic enhancement of optical nonlinearity in CuCl quantum dots: Giant-oscillator-strength effect on confined excitons. Phys. Rev. B 1993, 48, 2815–2818.

[19]

Takagahara, T. Biexciton states in semiconductor quantum dots and their nonlinear optical properties. Phys. Rev. B 1989, 39, 10206–10231.

[20]

Masumoto, Y.; Kawamura, T.; Era, K. Biexciton lasing in CuCl quantum dots. Appl. Phys. Lett. 1993, 62, 225–227.

[21]

Takagahara, T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B 1993, 47, 4569–4584.

[22]

Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.

[23]

Kanemitsu, Y. Light emission from porous silicon and related materials. Phys. Rep. 1995, 263, 1–91.

[24]

Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997, 82, 909–965.

[25]

Kanemitsu, Y. Silicon and germanium nanoparticles. Semicond. Semimetals 1997, 49, 157–204.

[26]

Brus, L. Silicon polymers and nanocrystals. Semicond. Semimetals 1997, 49, 303–328.

[27]

Kanemitsu, Y.; Ogawa, T.; Shiraishi, K.; Takeda, K. Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. Phys. Rev. B 1993, 48, 4883–4886.

[28]

Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Matsumoto, T.; Futagi, T.; Mimura, H. Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. Phys. Rev. B 1993, 48, 2827–2830.

[29]

Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl. Phys. Lett. 1991, 59, 3168–3170.

[30]

Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Maeda, Y. On the origin of visible photoluminescence in nanometer-size Ge crystallites. Appl. Phys. Lett. 1992, 61, 2187–2189.

[31]

Matsumoto, T.; Takahashi, J.; Tamaki, T.; Futagi, T.; Mimura, H.; Kanemitsu, Y. Blue-green luminescence from porous silicon carbide. Appl. Phys. Lett. 1994, 64, 226–228.

[32]

Mimura, H.; Matsumoto, T.; Kanemitsu, Y. Blue electroluminescence from porous silicon carbide. Appl. Phys. Lett. 1994, 65, 3350–3352.

[33]

Kanemitsu, Y.; Suzuki, K.; Nakayoshi, Y.; Masumoto, Y. Quantum size effects and enhancement of the oscillator strength of excitons in chains of silicon atoms. Phys. Rev. B 1992, 46, 3916–3919.

[34]

Kanemitsu, Y.; Suzuki, K.; Kondo, M.; Kyushin, S.; Matsumoto, H. Luminescence properties of a cubic silicon cluster octasilacubane. Phys. Rev. B 1995, 51, 10666–10670.

[35]

Kanemitsu, Y.; Suzuki, K.; Kyushin, S.; Matsumoto, H. Visible photoluminescence from silicon-backbone polymers. Phys. Rev. B 1995, 51, 13103–13110.

[36]

Kanemitsu, Y.; Futagi, T.; Matsumoto, T.; Mimura, H. Origin of the blue and red photoluminescence from oxidized porous silicon. Phys. Rev. B 1994, 49, 14732–14735.

[37]

Kanemitsu, Y. Luminescence properties of nanometer-sized Si crystallites: Core and surface states. Phys. Rev. B 1994, 49, 16845–16848.

[38]

Kanemitsu, Y.; Okamoto, S.; Otobe, M.; Oda, S. Photoluminescence mechanism in surface-oxidized silicon nanocrystals. Phys. Rev. B 1997, 55, R7375–R7378.

[39]

Brus, L. E.; Szajowski, P. F.; Wilson, W. L.; Harris, T. D.; Schuppler, S.; Citrin, P. H. Electronic spectroscopy and photophysics of Si nanocrystals: Relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 1995, 117, 2915–2922.

[40]

Zhou, Z. Y.; Brus, L.; Friesner, R. Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation. Nano Lett. 2003, 3, 163–167.

[41]

Zhou, Z. Y.; Friesner, R. A.; Brus, L. Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: Surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 2003, 125, 15599–15607.

[42]

Saitow, K. I. Bright silicon quantum dot synthesis and LED design: Insights into size-ligand-property relationships from slow- and fast-band engineering. Bull. Chem. Soc. Jpn. 2024, 97, uoad002.

[43]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[44]
Klimov, V. I. Nanocrystal Quantum Dots; 2nd ed. CRC Press: Boca Raton, 2017.
[45]

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

[46]

Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

[47]

Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

[48]

Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.

[49]

Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

[50]

Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

[51]

Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.

[52]

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

[53]

Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal semiconductor nanocrystal lasers and laser diodes. Chem. Rev. 2023, 123, 8251–8296.

[54]

Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401.

[55]

Ito, Y.; Matsuda, K.; Kanemitsu, Y. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev. B 2007, 75, 033309.

[56]

Ibuki, H.; Ihara, T.; Kanemitsu, Y. Spectral diffusion of emissions of excitons and trions in single CdSe/ZnS nanocrystals: Charge fluctuations in and around nanocrystals. J. Phys. Chem. C 2016, 120, 23772–23779.

[57]

Hiroshige, N.; Ihara, T.; Kanemitsu, Y. Simultaneously measured photoluminescence lifetime and quantum yield of two-photon cascade emission on single CdSe/ZnS nanocrystals. Phys. Rev. B 2017, 95, 245307.

[58]

Aceves, R.; Babin, V.; Barboza Flores, M.; Fabeni, P.; Maaroos, A.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Perez Salas, R.; Sildos, I. et al. Spectroscopy of CsPbBr3 quantum dots in CsBr: Pb crystals. J. Lumin. 2001, 93, 27–41.

[59]

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

[60]

Swarnkar, A.; Chulliyil, R.; Kumar Ravi, V.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

[61]

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

[62]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[63]

Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano, 2015, 9, 10386–10393.

[64]

Yumoto, G.; Kanemitsu, Y. Biexciton dynamics in halide perovskite nanocrystals. Phys. Chem. Chem. Phys. 2022, 24, 22405–22425.

[65]

Masumoto, Y.; Okamoto, S.; Katayanagi, S. Biexciton binding energy in CuCl quantum dots. Phys. Rev. B 1994, 50, 18658–18661.

[66]

Achermann, M.; Hollingsworth, J. A.; Klimov, V. I. Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys. Rev. B 2003, 68, 245302.

[67]

Cho, K.; Yamada, T.; Tahara, H.; Tadano, T.; Suzuura, H.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Luminescence fine structures in single lead halide perovskite nanocrystals: Size dependence of the exciton–phonon coupling. Nano Lett. 2021, 21, 7206–7212.

[68]

Blancon, J. C.; Even, J.; Stoumpos, C. C.; Kanatzidis, M. G.; Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 2020, 15, 969–985.

[69]

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.

[70]

Yamada, T.; Aharen, T.; Kanemitsu, Y. Near-band-edge optical responses of CH3NH3PbCl3 single crystals: Photon recycling of excitonic luminescence. Phys. Rev. Lett. 2018, 120, 057404.

[71]

Handa, T.; Tahara, H.; Aharen, T.; Kanemitsu, Y. Large negative thermo-optic coefficients of a lead halide perovskite. Sci. Adv. 2019, 5, eaax0786.

[72]

Yamada, Y.; Mino, H.; Kawahara, T.; Oto, K.; Suzuura, H.; Kanemitsu, Y. Polaron masses in CH3NH3PbX3 perovskites determined by Landau level spectroscopy in low magnetic fields. Phys. Rev. Lett. 2021, 126, 237401.

[73]

Yamada, Y.; Kanemitsu, Y. Electron-phonon interactions in halide perovskites. NPG Asia Mater. 2022, 14, 48.

[74]

Yamada, Y.; Yamada, T.; Phuong, L. Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 2015, 137, 10456–10459.

[75]

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

[76]

Ohara, K.; Yamada, T.; Tahara, H.; Aharen, T.; Hirori, H.; Suzuura, H.; Kanemitsu, Y. Excitonic enhancement of optical nonlinearities in perovskite CH3NH3PbCl3 single crystals. Phys. Rev. Mater. 2019, 3, 111601.

[77]

Ohara, K.; Yamada, T.; Aharen, T.; Tahara, H.; Hirori, H.; Suzuura, H.; Kanemitsu, Y. Impact of spin-orbit splitting on two-photon absorption spectra in a halide perovskite single crystal. Phys. Rev. B 2021, 103, L041201.

[78]

Yumoto, G.; Hirori, H.; Sekiguchi, F.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Strong spin–orbit coupling inducing Autler–Townes effect in lead halide perovskite nanocrystals. Nat. Commun. 2021, 12, 3026.

[79]

Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.

[80]

Yarita, N.; Tahara, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Impact of postsynthetic surface modification on photoluminescence intermittency in formamidinium lead bromide perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 6041–6047.

[81]

Yarita, N.; Aharen, T.; Tahara, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Observation of positive and negative trions in organic–inorganic hybrid perovskite nanocrystals. Phys. Rev. Mater. 2018, 2, 116003.

[82]

Kanemitsu, Y. Trion dynamics in lead halide perovskite nanocrystals. J. Chem. Phys. 2019, 151, 170902.

[83]

Masada, S.; Yamada, T.; Tahara, H.; Hirori, H.; Saruyama, M.; Kawawaki, S.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Effect of A-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals. Nano Lett. 2020, 20, 4022–4028.

[84]

Cho, K.; Tahara, H.; Yamada, T.; Suzuura, H.; Tadano, T.; Sato, R.; Saruyama, M.; Hirori, H.; Teranishi, T.; Kanemitsu, Y. Exciton–phonon and trion–phonon couplings revealed by photoluminescence spectroscopy of single CsPbBr3 perovskite nanocrystals. Nano Lett. 2022, 22, 7674–7681.

[85]

Cho, K.; Sato, T.; Yamada, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Suzuura, H.; Kanemitsu, Y. Size dependence of Trion and biexciton binding energies in lead halide perovskite nanocrystals. ACS Nano 2024, 18, 5723–5729.

[86]

Cho, K.; Yamada, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Temperature dependence of photoluminescence spectrum of single lead halide perovskite nanocrystals: Effect of size on the phase transition temperature. J. Chem. Phys. 2023, 158, 201104.

[87]

Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.

[88]

Tamarat, P.; Bodnarchuk, M. I.; Trebbia, J. B.; Erni, R.; Kovalenko, M. V.; Even, J.; Lounis, B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717–724.

[89]

Nakahara, S.; Tahara, H.; Yumoto, G.; Kawawaki, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification. J. Phys. Chem. C 2018, 122, 22188–22193.

[90]

Nagai, M.; Tomioka, T.; Ashida, M.; Hoyano, M.; Akashi, R.; Yamada, Y.; Aharen, T.; Kanemitsu, Y. Longitudinal optical phonons modified by organic molecular cation motions in organic-inorganic hybrid perovskites. Phys. Rev. Lett. 2018, 121, 145506.

[91]
Toyozawa, Y. Optical Processes in Solids; Cambridge University Press: Cambridge, 2003.
[92]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[93]

Biliroglu, M.; Findik, G.; Mendes, J.; Seyitliyev, D.; Lei, L.; Dong, Q.; Mehta, Y.; Temnov, V. V.; So, F.; Gundogdu, K. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photonics 2022, 16, 324–329.

[94]

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

[95]

Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

[96]

Hosoki, K.; Tayagaki, T.; Yamamoto, S.; Matsuda, K.; Kanemitsu, Y. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys. Rev. Lett. 2008, 100, 207404.

[97]

Ono, M.; Nishihara, T.; Ihara, T.; Kikuchi, M.; Tanaka, A.; Suzuki, M.; Kanemitsu, Y. Impact of surface ligands on the photocurrent enhancement due to multiple exciton generation in close-packed nanocrystal thin films. Chem. Sci. 2014, 5, 2696–2701.

[98]

Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Collective enhancement of quantum coherence in coupled quantum dot films. Phys. Rev. B 2021, 104, L241405.

[99]

Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses. Nat. Nanotechnol 2024, 19, 744–750.

[100]

Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Harmonic quantum coherence of multiple excitons in PbS/CdS core-shell nanocrystals. Phys. Rev. Lett. 2017, 119, 247401.

[101]

Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nat. Commun. 2018, 9, 3179.

[102]

Nakagawa, K.; Hirori, H.; Sato, S. A.; Tahara, H.; Sekiguchi, F.; Yumoto, G.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids. Nat. Phys. 2022, 18, 874–878.

[103]

Hirori, H.; Sato, S. A.; Kanemitsu, Y. High-order harmonic generation in solids: The role of intraband transitions in extreme nonlinear optics. J. Phys. Chem. Lett. 2024, 15, 2184–2192.

Nano Research
Cite this article:
Kanemitsu Y. Photophysics of halide perovskite nanocrystal quantum dots. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6822-z
Topics:

112

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 May 2024
Revised: 11 June 2024
Accepted: 12 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return