Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Here I provide a summary of my group’s research on the photophysics of nanocrystal quantum dots and briefly discuss multipeak luminescence structures related to excitons, trions, and biexcitons in halide perovskite nanocrystals.
Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 1981, 34, 363–366.
Ekimov, A. I.; Onushchehko, A. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. Phys. Semicond. 1982, 16, 775–778.
Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.
Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.
Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.
Brus, L. E.; Efros, A. L.; Itoh, T. Spectroscopy of isolated and assembled semiconductor nanocrystals. J. Lumin. 1996, 70, 1–484.
Éfros, A. L.; Éfros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982, 16, 772–775.
Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 1988, 38, 9797–9805.
Sercel, P. C.; Lyons, J. L.; Bernstein, N.; Efros, A. L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 2019, 151, 234106.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.
Itoh, T.; Kirihara, T. Excitons in CuCl microcrystals embedded in NaCl. J. Lumin. 1984, 31–32, 120–122.
Itoh, T.; Iwabuchi, Y.; Kataoka, M. Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement. Phys. Status Solidi (B) 1988, 145, 567–577.
Itoh, T.; Iwabuchi, Y.; Kirihara, T. Size-quantized excitons in microcrystals of cuprous halides embedded in alkali-halide matrices. Phys. Status Solidi (B) 1988, 146, 531–543.
Itoh, T.; Furumiya, M.; Ikehara, T.; Gourdon, C. Size-dependent radiative decay time of confined excitons in CuCl microcrystals. Solid State Commun. 1990, 73, 271–274.
Hanamura, E. Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B 1988, 37, 1273–1279.
Kataoka, T.; Tokizaki, T.; Nakamura, A. Mesoscopic enhancement of optical nonlinearity in CuCl quantum dots: Giant-oscillator-strength effect on confined excitons. Phys. Rev. B 1993, 48, 2815–2818.
Takagahara, T. Biexciton states in semiconductor quantum dots and their nonlinear optical properties. Phys. Rev. B 1989, 39, 10206–10231.
Masumoto, Y.; Kawamura, T.; Era, K. Biexciton lasing in CuCl quantum dots. Appl. Phys. Lett. 1993, 62, 225–227.
Takagahara, T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B 1993, 47, 4569–4584.
Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.
Kanemitsu, Y. Light emission from porous silicon and related materials. Phys. Rep. 1995, 263, 1–91.
Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997, 82, 909–965.
Kanemitsu, Y. Silicon and germanium nanoparticles. Semicond. Semimetals 1997, 49, 157–204.
Brus, L. Silicon polymers and nanocrystals. Semicond. Semimetals 1997, 49, 303–328.
Kanemitsu, Y.; Ogawa, T.; Shiraishi, K.; Takeda, K. Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. Phys. Rev. B 1993, 48, 4883–4886.
Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Matsumoto, T.; Futagi, T.; Mimura, H. Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. Phys. Rev. B 1993, 48, 2827–2830.
Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl. Phys. Lett. 1991, 59, 3168–3170.
Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Maeda, Y. On the origin of visible photoluminescence in nanometer-size Ge crystallites. Appl. Phys. Lett. 1992, 61, 2187–2189.
Matsumoto, T.; Takahashi, J.; Tamaki, T.; Futagi, T.; Mimura, H.; Kanemitsu, Y. Blue-green luminescence from porous silicon carbide. Appl. Phys. Lett. 1994, 64, 226–228.
Mimura, H.; Matsumoto, T.; Kanemitsu, Y. Blue electroluminescence from porous silicon carbide. Appl. Phys. Lett. 1994, 65, 3350–3352.
Kanemitsu, Y.; Suzuki, K.; Nakayoshi, Y.; Masumoto, Y. Quantum size effects and enhancement of the oscillator strength of excitons in chains of silicon atoms. Phys. Rev. B 1992, 46, 3916–3919.
Kanemitsu, Y.; Suzuki, K.; Kondo, M.; Kyushin, S.; Matsumoto, H. Luminescence properties of a cubic silicon cluster octasilacubane. Phys. Rev. B 1995, 51, 10666–10670.
Kanemitsu, Y.; Suzuki, K.; Kyushin, S.; Matsumoto, H. Visible photoluminescence from silicon-backbone polymers. Phys. Rev. B 1995, 51, 13103–13110.
Kanemitsu, Y.; Futagi, T.; Matsumoto, T.; Mimura, H. Origin of the blue and red photoluminescence from oxidized porous silicon. Phys. Rev. B 1994, 49, 14732–14735.
Kanemitsu, Y. Luminescence properties of nanometer-sized Si crystallites: Core and surface states. Phys. Rev. B 1994, 49, 16845–16848.
Kanemitsu, Y.; Okamoto, S.; Otobe, M.; Oda, S. Photoluminescence mechanism in surface-oxidized silicon nanocrystals. Phys. Rev. B 1997, 55, R7375–R7378.
Brus, L. E.; Szajowski, P. F.; Wilson, W. L.; Harris, T. D.; Schuppler, S.; Citrin, P. H. Electronic spectroscopy and photophysics of Si nanocrystals: Relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 1995, 117, 2915–2922.
Zhou, Z. Y.; Brus, L.; Friesner, R. Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation. Nano Lett. 2003, 3, 163–167.
Zhou, Z. Y.; Friesner, R. A.; Brus, L. Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: Surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 2003, 125, 15599–15607.
Saitow, K. I. Bright silicon quantum dot synthesis and LED design: Insights into size-ligand-property relationships from slow- and fast-band engineering. Bull. Chem. Soc. Jpn. 2024, 97, uoad002.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.
Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.
Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.
Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.
Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.
Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.
Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.
Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.
Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal semiconductor nanocrystal lasers and laser diodes. Chem. Rev. 2023, 123, 8251–8296.
Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401.
Ito, Y.; Matsuda, K.; Kanemitsu, Y. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev. B 2007, 75, 033309.
Ibuki, H.; Ihara, T.; Kanemitsu, Y. Spectral diffusion of emissions of excitons and trions in single CdSe/ZnS nanocrystals: Charge fluctuations in and around nanocrystals. J. Phys. Chem. C 2016, 120, 23772–23779.
Hiroshige, N.; Ihara, T.; Kanemitsu, Y. Simultaneously measured photoluminescence lifetime and quantum yield of two-photon cascade emission on single CdSe/ZnS nanocrystals. Phys. Rev. B 2017, 95, 245307.
Aceves, R.; Babin, V.; Barboza Flores, M.; Fabeni, P.; Maaroos, A.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Perez Salas, R.; Sildos, I. et al. Spectroscopy of CsPbBr3 quantum dots in CsBr: Pb crystals. J. Lumin. 2001, 93, 27–41.
Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.
Swarnkar, A.; Chulliyil, R.; Kumar Ravi, V.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano, 2015, 9, 10386–10393.
Yumoto, G.; Kanemitsu, Y. Biexciton dynamics in halide perovskite nanocrystals. Phys. Chem. Chem. Phys. 2022, 24, 22405–22425.
Masumoto, Y.; Okamoto, S.; Katayanagi, S. Biexciton binding energy in CuCl quantum dots. Phys. Rev. B 1994, 50, 18658–18661.
Achermann, M.; Hollingsworth, J. A.; Klimov, V. I. Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys. Rev. B 2003, 68, 245302.
Cho, K.; Yamada, T.; Tahara, H.; Tadano, T.; Suzuura, H.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Luminescence fine structures in single lead halide perovskite nanocrystals: Size dependence of the exciton–phonon coupling. Nano Lett. 2021, 21, 7206–7212.
Blancon, J. C.; Even, J.; Stoumpos, C. C.; Kanatzidis, M. G.; Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 2020, 15, 969–985.
Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.
Yamada, T.; Aharen, T.; Kanemitsu, Y. Near-band-edge optical responses of CH3NH3PbCl3 single crystals: Photon recycling of excitonic luminescence. Phys. Rev. Lett. 2018, 120, 057404.
Handa, T.; Tahara, H.; Aharen, T.; Kanemitsu, Y. Large negative thermo-optic coefficients of a lead halide perovskite. Sci. Adv. 2019, 5, eaax0786.
Yamada, Y.; Mino, H.; Kawahara, T.; Oto, K.; Suzuura, H.; Kanemitsu, Y. Polaron masses in CH3NH3PbX3 perovskites determined by Landau level spectroscopy in low magnetic fields. Phys. Rev. Lett. 2021, 126, 237401.
Yamada, Y.; Kanemitsu, Y. Electron-phonon interactions in halide perovskites. NPG Asia Mater. 2022, 14, 48.
Yamada, Y.; Yamada, T.; Phuong, L. Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 2015, 137, 10456–10459.
Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.
Ohara, K.; Yamada, T.; Tahara, H.; Aharen, T.; Hirori, H.; Suzuura, H.; Kanemitsu, Y. Excitonic enhancement of optical nonlinearities in perovskite CH3NH3PbCl3 single crystals. Phys. Rev. Mater. 2019, 3, 111601.
Ohara, K.; Yamada, T.; Aharen, T.; Tahara, H.; Hirori, H.; Suzuura, H.; Kanemitsu, Y. Impact of spin-orbit splitting on two-photon absorption spectra in a halide perovskite single crystal. Phys. Rev. B 2021, 103, L041201.
Yumoto, G.; Hirori, H.; Sekiguchi, F.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Strong spin–orbit coupling inducing Autler–Townes effect in lead halide perovskite nanocrystals. Nat. Commun. 2021, 12, 3026.
Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.
Yarita, N.; Tahara, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Impact of postsynthetic surface modification on photoluminescence intermittency in formamidinium lead bromide perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 6041–6047.
Yarita, N.; Aharen, T.; Tahara, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Observation of positive and negative trions in organic–inorganic hybrid perovskite nanocrystals. Phys. Rev. Mater. 2018, 2, 116003.
Kanemitsu, Y. Trion dynamics in lead halide perovskite nanocrystals. J. Chem. Phys. 2019, 151, 170902.
Masada, S.; Yamada, T.; Tahara, H.; Hirori, H.; Saruyama, M.; Kawawaki, S.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Effect of A-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals. Nano Lett. 2020, 20, 4022–4028.
Cho, K.; Tahara, H.; Yamada, T.; Suzuura, H.; Tadano, T.; Sato, R.; Saruyama, M.; Hirori, H.; Teranishi, T.; Kanemitsu, Y. Exciton–phonon and trion–phonon couplings revealed by photoluminescence spectroscopy of single CsPbBr3 perovskite nanocrystals. Nano Lett. 2022, 22, 7674–7681.
Cho, K.; Sato, T.; Yamada, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Suzuura, H.; Kanemitsu, Y. Size dependence of Trion and biexciton binding energies in lead halide perovskite nanocrystals. ACS Nano 2024, 18, 5723–5729.
Cho, K.; Yamada, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Temperature dependence of photoluminescence spectrum of single lead halide perovskite nanocrystals: Effect of size on the phase transition temperature. J. Chem. Phys. 2023, 158, 201104.
Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.
Tamarat, P.; Bodnarchuk, M. I.; Trebbia, J. B.; Erni, R.; Kovalenko, M. V.; Even, J.; Lounis, B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717–724.
Nakahara, S.; Tahara, H.; Yumoto, G.; Kawawaki, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification. J. Phys. Chem. C 2018, 122, 22188–22193.
Nagai, M.; Tomioka, T.; Ashida, M.; Hoyano, M.; Akashi, R.; Yamada, Y.; Aharen, T.; Kanemitsu, Y. Longitudinal optical phonons modified by organic molecular cation motions in organic-inorganic hybrid perovskites. Phys. Rev. Lett. 2018, 121, 145506.
Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.
Biliroglu, M.; Findik, G.; Mendes, J.; Seyitliyev, D.; Lei, L.; Dong, Q.; Mehta, Y.; Temnov, V. V.; So, F.; Gundogdu, K. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photonics 2022, 16, 324–329.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.
Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.
Hosoki, K.; Tayagaki, T.; Yamamoto, S.; Matsuda, K.; Kanemitsu, Y. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys. Rev. Lett. 2008, 100, 207404.
Ono, M.; Nishihara, T.; Ihara, T.; Kikuchi, M.; Tanaka, A.; Suzuki, M.; Kanemitsu, Y. Impact of surface ligands on the photocurrent enhancement due to multiple exciton generation in close-packed nanocrystal thin films. Chem. Sci. 2014, 5, 2696–2701.
Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Collective enhancement of quantum coherence in coupled quantum dot films. Phys. Rev. B 2021, 104, L241405.
Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses. Nat. Nanotechnol 2024, 19, 744–750.
Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Harmonic quantum coherence of multiple excitons in PbS/CdS core-shell nanocrystals. Phys. Rev. Lett. 2017, 119, 247401.
Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nat. Commun. 2018, 9, 3179.
Nakagawa, K.; Hirori, H.; Sato, S. A.; Tahara, H.; Sekiguchi, F.; Yumoto, G.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids. Nat. Phys. 2022, 18, 874–878.
Hirori, H.; Sato, S. A.; Kanemitsu, Y. High-order harmonic generation in solids: The role of intraband transitions in extreme nonlinear optics. J. Phys. Chem. Lett. 2024, 15, 2184–2192.