AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution

Haitao Wang1Lianglang Yu1Jiahe Peng1Jing Zou1Weiping Gong2Jizhou Jiang1( )
School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
Show Author Information

Graphical Abstract

An advanced g-C3N4-based S-scheme heterojunction comprising two-dimensional (2D) sulfur-doped g-C3N4 nanosheets and one-dimensional (1D) FeCo2O4 nanorods (SCN/FeCo2O4) is fabricated successfully as efficient photocatalysts for H2 evolution.

Abstract

g-C3N4 emerges as a promising metal-free semiconductor photocatalyst due to its cost-effectiveness, facile synthesis, suitable visible light response, and robust thermal stability. However, its practical application in photocatalytic hydrogen evolution reaction (HER) is impeded by rapid carrier recombination and limited light absorption capacity. In this study, we successfully develop a novel g-C3N4-based step-scheme (S-scheme) heterojunction comprising two-dimensional (2D) sulfur-doped g-C3N4 nanosheets (SCN) and one-dimensional (1D) FeCo2O4 nanorods (FeCo2O4), demonstrating enhanced photocatalytic HER activity. The engineered SCN/FeCo2O4 S-scheme heterojunction features a well-defined 2D/1D heterogeneous interface facilitating directed interfacial electron transfer from FeCo2O4 to SCN, driven by the lower Fermi level of SCN compared to FeCo2O4. This establishment of electron-interacting 2D/1D S-scheme heterojunction not only facilitates the separation and migration of photogenerated carriers, but also enhances visible-light absorption and mitigates electron-hole pair recombination. Band structure analysis and density functional theory calculations corroborate that the carrier migration in the SCN/FeCo2O4 photocatalyst adheres to a typical S-scheme heterojunction mechanism, effectively retaining highly reactive photogenerated electrons. Consequently, the optimized SCN/FeCo2O4 heterojunction exhibits a substantially high hydrogen production rate of 6303.5 μmol·g–1·h–1 under visible light excitation, which is 2.4 times higher than that of the SCN. Furthermore, the conjecture of the S-scheme mechanism is confirmed by in situ XPS measurement. The 2D/1D S-scheme heterojunction established in this study provides valuable insights into the development of high-efficiency carbon-based catalysts for diverse energy conversion and storage applications.

Electronic Supplementary Material

Download File(s)
6823_ESM.pdf (1.4 MB)

References

[1]

Guan, D. Q.; Wang, B. W.; Zhang, J. G.; Shi, R.; Jiao, K.; Li, L. C.; Wang, Y.; Xie, B.; Zhang, Q. W.; Zhu, Y. F. et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943.

[2]

Zhao, B. B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C. B.; Yu, H. G. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chin. J. Catal. 2023, 52, 127–143.

[3]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[4]

Wang, L. J.; Yang, T. Y.; Feng, B.; Xu, X. Y.; Shen, Y. Y.; Li, Z. H.; Arramel; Jiang, J. Z. Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation. Chin. J. Catal. 2023, 54, 265–277.

[5]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 136, e202319618.

[6]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3– x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[7]

Jiang, J. Z.; Li, F. Y.; Ding, L.; Zhang, C. X.; Arramel; Li, X. MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications. Nano Res. 2024, 17, 3429–3454.

[8]

Jiang, J. Z.; Wang, Y. J.; Wu, J.; Wang, H.; Arramel; Zou, Y. L.; Zou, J.; Wang, H. T. Charge transfer interfaces across black phosphorus/Co, N Co-doped carbon heterojunction for enhanced electrocatalytic water splitting. J. Mater. Sci. Technol. 2024, 178, 171–178.

[9]

Wang, J. M.; Jiang, J. Z.; Li, F. Y.; Zou, J.; Xiang, K.; Wang, H. T.; Li, Y. J.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58.

[10]

Li, F. Y.; Zhu, G. H.; Jiang, J. Z.; Yang, L.; Deng, F. X.; Arramel; Li, X. A review of updated S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180.

[11]

Sun, W.; Wang, Y. J.; Xiang, K.; Bai, S. S.; Wang, H. T.; Zou, J.; Arramel; Jiang, J. Z. CoP decorated on Ti3C2T x MXene nanocomposites as robust electrocatalyst for hydrogen evolution reaction. Acta Phys. -Chim. Sin. 2024, 40, 2308015.

[12]

Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

[13]

Wang, J. W.; Qin, Q.; Li, F. Y.; Anjarsari, Y.; Sun, W.; Azzahiidah, R.; Zou, J.; Xiang, K.; Ma, H. J.; Jiang, J. Z. et al. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. 2023, 33, 1381–1394.

[14]

Yang, H.; Guo, J.; Xia, Y.; Yan, J. T.; Wen, L. L. Schottky-assisted S-scheme heterojunction photocatalyst CdS/Pt@NU-1000 for efficient visible-light-driven H2 evolution. J. Mater. Sci. Technol. 2024, 195, 155–164.

[15]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[16]

Brar, K. K.; Cortez, A. A.; Pellegrini, V. O. A.; Amulya, K.; Polikarpov, I.; Magdouli, S.; Kumar, M.; Yang, Y. H.; Bhatia, S. K.; Brar, S. K. An overview on progress, advances, and future outlook for biohydrogen production technology. Int. J. Hyd. Energy 2022, 47, 37264–37281.

[17]

Yang, S. Y.; Wang, K. L.; Chen, Q.; Wu, Y. Enhanced photocatalytic hydrogen production of S-scheme TiO2/g-C3N4 heterojunction loaded with single-atom Ni. J. Mater. Sci. Technol. 2024, 175, 104–114.

[18]

Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025–2201033.

[19]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[20]

Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Jiang, J. Z. Strategically designing and fabricating nitrogen and sulfur Co-doped g-C3N4 for accelerating photocatalytic H2 evolution. J. Mater. Sci. Technol. 2025, 208, 111–119.

[21]

Jin, S.; Wu, J. B.; Jiang, J. Z.; Wang, R. G.; Zhou, B. X.; Wang, L. B.; Hu, Q. K.; Zhou, A. G. Boosting photocatalytic performance of Cd x Zn1– x S for H2 production by Mo2C MXene with large interlayer distance. J. Mater. Chem. A 2023, 11, 5851–5863.

[22]

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

[23]

Jiang, J. Z.; Ou-yang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

[24]

Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

[25]

Wang, L. Q.; Si, W. P.; Tong, Y. Y.; Hou, F.; Pergolesi, D.; Hou, J. G.; Lippert, T.; Dou, S.; Liang, J. Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting. Carbon Energy 2020, 2, 223–250.

[26]

Chen, L.; Maigbay, M. A.; Li, M.; Qiu. X. Q. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv. Powder Mater. 2024, 3, 100150.

[27]

Madhusudan, P.; Shi, R.; Xiang, S. L.; Jin, M. T.; Chandrashekar, B. N.; Wang, J. W.; Wang, W. J.; Peng, O. W.; Amini, A.; Cheng, C. Construction of highly efficient Z-scheme Zn x Cd1- x S/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl. Catal. B: Environ. 2021, 282, 119600.

[28]

Hao, P. Y.; Chen, Z. Z.; Yan, Y. J.; Shi, W. L.; Guo, F. Recent advances, application and prospect in g-C3N4-based S-scheme heterojunction photocatalysts. Sep. Purif. Technol. 2024, 330, 125302.

[29]

Lin, S. N.; Zhang, T. A. Research progress in preparation and application of spinel-type metallic oxides (M ≥ 2). J. Alloys Compd. 2023, 962, 171117.

[30]

Acharya, R.; Pati, S.; Parida, K. A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 2022, 357, 119105.

[31]

Domínguez-Arvizu, J. L.; Jiménez-Miramontes, J. A.; Hernández-Majalca, B. C.; Valenzuela-Castro, G. E.; Gaxiola-Cebreros, F. A.; Salinas-Gutiérrez, J. M.; Collins-Martínez, V.; López-Ortiz, A. Study of NiFe2O4/Cu2O p-n heterojunctions for hydrogen production by photocatalytic water splitting with visible light. J. Mater. Res. Technol. 2022, 21, 4184–4199.

[32]

Bouakaz, H.; Abbas, M.; Benallal, S.; Brahimi, R.; Trari, M. Semiconducting and electrochemical properties of the spinel FeCo2O4 synthetized by co-precipitation. Application to H2 production under visible light. J. Photochem. Photobiol. A: Chem. 2023, 438, 114543.

[33]

Sakthivel, C.; Nivetha, A.; Thiruppathi, G.; Sundararaj, P.; Prabha, I. Synthesis of a multi-functionalized NiCo2O4 spinel heterostructure via the hydrothermal route for high-performance photo-electrocatalytic, anti-bacterial and eco-toxicity applications. New J. Chem. 2023, 47, 571–588.

[34]

He, X. Y.; Li, R. M.; Liu, J. Y.; Liu, Q.; Chen, R. R.; Song, D. L.; Wang, J. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 2018, 334, 1573–1583.

[35]

Yeon, J. S.; Park, T. H.; Ko, Y. H.; Sivakumar, P.; Kim, J. S.; Kim, Y.; Park, H. S. 2D spinel ZnCo2O4 microsheet-coated functional separator for promoted redox kinetics and inhibited polysulfide dissolution. J. Energy Chem. 2021, 55, 468–475

[36]

Bagtache, R.; Zahra, S.; Abdi, A.; Trari, M. Characterization of CuCo2O4 prepared by nitrate route: Application to Ni2+ reduction under visible light. J. Photochem. Photobiol. A: Chem. 2020, 400, 112728.

[37]

Shang, M. S.; Liu, Y.; Xia, J.; Zhang, S. M.; Yang, J. H. Synthesis and characterization of MnCo2O4 microspheres based air electrode for rechargeable sodium-air batteries. Ceram. Int. 2017, 43, 3218–3223.

[38]

Fu, H. H.; Liu, Y.; Chen, L.; Shi, Y. L.; Kong, W. W.; Hou, J.; Yu, F.; Wei, T. T.; Wang, H.; Guo, X. H. Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2019, 296, 719–729.

[39]

Xie, J. T.; Zhen, C. M.; Liu, L.; Ma, L.; Hou, D. L.; Pang, H. Q.; Zhao, D. W. Effects of calcination temperature on structure and magnetic properties of pure FeCo2O4 powders. Ceram. Int. 2021, 47, 11993–12001.

[40]

Verma, D.; Maitra, T.; Varma, G. D. Field induced metamagnetic transition and mixed charge transfer Mott-Hubbard character in nanocrystalline FeCo2O4 spinel oxide: A combined study using experimental and first principles techniques. J. Alloys Compd. 2024, 976, 173216.

[41]

Saka, C. Efficient and durable H2 production from NaBH4 methanolysis using N doped hybrid g-C3N4-SiO2 composites with ammonia as a nitrogen source. Fuel 2022, 324, 124594.

[42]

Huang, J. J.; Du, J. M.; Du, H. W.; Xu, G. S.; Yuan, Y. P. Control of nitrogen vacancy in g-C3N4 by heat treatment in an ammonia atmosphere for enhanced photocatalytic hydrogen generation. Acta Phys.-Chim. Sin. 2020, 36, 1905056.

[43]

Deng, X.; Wang, D. D.; Li, H. J.; Jiang, W.; Zhou, T. Y.; Wen, Y.; Yu, B.; Che, G. B.; Wang, L. Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. J. Alloys Compd. 2022, 894, 162209.

[44]
Liang, Z. J.; Peng, Y. H.; Feng, H. H.; Hong, Z. B.; Liu, F. Q.; Yu, R. H.; Cao, Y.; Xie, M. Y.; Zhang, Y. T.; Zhang, X. et al. Versatile synthesis of hollow-structured mesoporous carbons by enhanced surface interaction for high-performance lithium-ion batteries. Adv. Mater., in press, DOI: 10.1002/adma.202305050.
[45]

Wang, H. T.; Yu, L. L.; Jiang, J. Z.; Arramel; Zou, J. S-doping of the N-Sites of g-C3N4 to enhance photocatalytic H2 evolution activity. Acta Phys. -Chim. Sin. 2024, 40, 2305047.

[46]

Wang, H. T.; Jiang, J. Z.; Yu, L. L.; Peng, J. H.; Song, Z.; Xiong, Z. G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J. P. et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small 2023, 19, 2301116.

[47]

Xia, Y.; Yang, H.; Ho, W.; Zhu, B. C.; Yu, J. G. Promoting the photocatalytic NO oxidation activity of hierarchical porous g-C3N4 by introduction of nitrogen vacancies and charge channels. Appl. Catal. B: Environ. 2024, 344, 123604.

[48]

Ding, X. L.; Gao, R. Y.; Chen, Y.; Wang, H. Y.; Liu, Y. D.; Zhou, B. H.; Wang, C. F.; Bai, G. M.; Qiu, W. G. Carbon vacancies in graphitic carbon nitride-driven high catalytic performance of Pd/CN for phenol-selective hydrogenation to cyclohexanone. ACS Catal. 2024, 14, 3308–3319.

[49]

Zhu, D. D.; Zhou, Q. X. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl. Catal. B: Environ. 2021, 281, 119474.

[50]

Abbas, Y.; Ali, S.; Ali, S.; Azeem, W.; Zuhra, Z.; Wang, H. L.; Bououdina, M.; Sun, Z. Z. Cyclotriphosphazene (P3N3) derived FeO x @SPNO-C core-shell nanospheres as peroxymonosulfate activator for degradation via non-radical pathway. Appl. Surf. Sci. 2024, 645, 158836.

[51]

Tan, X. Q.; Ng, S. F.; Mohamed, A. R.; Ong, W. J. Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy 2022, 4, 665–730.

[52]

Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Appl. Catal. B: Environ. 2018, 238, 592–598.

[53]

Lalwani, S.; Munjal, M.; Singh, G.; Sharma, R. K. Layered nanoblades of iron cobaltite for high performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 476, 1025–1034.

[54]

Li, S. S.; Wang, Y.; Sun, J. L.; Xu, C. J.; Chen, H. Y. Simple preparation of porous FeCo2O4 microspheres and nanosheets for advanced asymmetric supercapacitors. ACS Appl. Energy Mater. 2020, 3, 11307–11317.

[55]

Dong, F.; Liu, X. H.; Irfan, M.; Yang, L.; Li, S. L.; Ding, J.; Li, Y.; Khan, I. U.; Zhang, P. P. Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell. Int. J. Hyd. Energy 2019, 44, 8178–8187.

[56]

Liu, Y. P.; Zhao, S.; Zhang, C.; Fang, J. S.; Xie, L. Y.; Zhou, Y. M.; Zhuo, S. P. Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production. Carbon 2021, 182, 287–296.

[57]

Guo, F.; Chen, Z. H.; Shi, Y. X.; Cao, L. W.; Cheng, X. F.; Shi, W. L.; Chen, L. Z.; Lin, X. A ragged porous hollow tubular carbon nitride towards boosting visible-light photocatalytic hydrogen production in water and seawater. Renew. Energy 2022, 188, 1–10.

[58]

Zou, J.; Liao, G. D.; Wang, H. T.; Ding, Y. B.; Wu, P. X.; Hsu, J. P.; Jiang, J. Z. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. J. Alloys Compd. 2022, 911, 165020.

[59]

Xia, L.; Tong, X.; Yao, Y. S.; Long, Z. H.; Cai, M. K.; Jin, L.; Vomiero, A.; Wang, Z. M. Simultaneous copper incorporation in core/shell-structured eco-friendly quantum dots for high-efficiency photoelectrochemical hydrogen evolution. Nano Energy 2024, 122, 109302.

[60]

Wang, X. P.; Jin, Z. L. Adjusting inter-semiconductor barrier height via crystal plane engineering: Crystalline face exposed single crystal cadmium sulfide augmentative S-scheme heterojunctions for efficiently photocatalytic hydrogen production. Appl. Catal. B: Environ. 2024, 342, 123373.

[61]

Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.

[62]

Yanalak, G.; Koç, B. K.; Yılmaz, S.; Israr, M.; Ersoz, M.; Metin, O.; Patir, I. H. The effect of Ni and Co co-catalysts on the catalytic activity of mesoporous graphitic carbon nitride/black phosphorus/molybdenum disulfide heterojunctions in solar-driven hydrogen evolution. J. Environ. Chem. Eng. 2023, 11, 111084.

[63]

Wang, S. J.; Chen, L.; Zhao, X. L.; Zhang, J. Q.; Ao, Z. M.; Liu, W. R.; Wu, H.; Shi, L.; Yin, Y.; Xu, X. Y. et al. Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. Appl. Catal. B: Environ. 2020, 278, 119312.

[64]

Zhao, H.; Liu, J.; Zhong, N.; Larter, S.; Li, Y.; Kibria, M. G.; Su, B. L.; Chen, Z. X.; Hu, J. G. Biomass photoreforming for hydrogen and value-added chemicals Co-production on hierarchically porous photocatalysts. Adv. Energy Mater. 2023, 13, 2300257.

[65]

Guo, F.; Shi, W. L.; Wang, H. B.; Han, M. M.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. H. Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 2017, 7, 3325–3331.

[66]

Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoS x supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interf. Sci. 2020, 569, 34–49.

Nano Research
Pages 8007-8016
Cite this article:
Wang H, Yu L, Peng J, et al. Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution. Nano Research, 2024, 17(9): 8007-8016. https://doi.org/10.1007/s12274-024-6823-y
Topics:

447

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 April 2024
Revised: 11 June 2024
Accepted: 12 June 2024
Published: 27 July 2024
© Tsinghua University Press 2024
Return