AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gradient layered MXene/Fe3O4@CNTs/TOCNF ultrathin nanocomposite paper exhibiting effective electromagnetic shielding and multifunctionality

Zhengkun Ma1Jingzong He1Shilin Liu1Xiaoxuan Qie1Meiheng Gan1Ruonan Cheng2Qilin Wu1( )Malcolm Xing3( )
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Show Author Information

Graphical Abstract

In this work, an effective electromagnetic shielding film was formed by ingenious use of layered structure and gradient design. The dehydroxylation treatment made it have the potential of multifunctional applications.

Abstract

As wearable electronic devices are rapidly developing, there is an urgent need for lightweight, flexible, and ultrathin multifunctional electromagnetic interference (EMI) shielding materials. However, the flexible ultrathin paper that combines efficient shielding and multifunctional integration remains a considerable challenge. Here, a novel MXene/Fe3O4@CNTs/TOCNF (MCT, MXene = transition metal carbide/carbonitride, CNTs = carbon nanotubes, TOCNF = TEMPO-oxidized cellulose nanofiber, TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl radical) nanocomposite paper with a multilayer electromagnetic gradient structure and electromagnetic dual losses was successfully prepared by a simple filtration strategy. Benefiting from effective gradient design and adjusting the proportion of TOCNF, the composite paper (only 18 μm) exhibits outstanding shielding effectiveness (SE) of 66 dB in the X-band, ultrahigh thickness-specific SE and surface-specific SE values of 3300 dB·mm−1 and 31,428 dB·cm2·g−1 respectively. Furthermore, dehydroxylation treatment improves MCT paper's hydrophobicity, environmental stability, and mechanical strength, expanding its range of use. Excitingly, the highly efficient Joule heating properties and hydrophobicity provide MCT additional de-icing capabilities. We also simulated the electromagnetic shielding effects of MCT composite paper, which was applied in practice. This study documents an innovative and intriguing material combination, providing a simple and effective manufacturing strategy for developing EMI shielding materials. MCT paper is highly suitable for outdoor portable or wearable electronic devices and has significant application potential in humid/severe cold environments.

Electronic Supplementary Material

Download File(s)
6824_ESM.pdf (730.7 KB)

References

[1]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[2]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[3]

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

[4]

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

[5]

Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

[6]

Wang, G. L.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G. Z.; Li, H. P.; Zhao, G. Q.; Park, C. B. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2018, 10, 1195–1203.

[7]

Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587.

[8]

Yu, C. C.; Zhu, S. P.; Xing, C. T.; Pan, X. C.; Zuo, X. B.; Liu, J. F.; Chen, M. L.; Liu, L. W.; Tao, G. H.; Li, Q. Fe nanoparticles and CNTs co-decorated porous carbon/graphene foam composite for excellent electromagnetic interference shielding performance. J. Alloys Compd. 2020, 820, 153108.

[9]

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2T x MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

[10]

Nepal, D.; Kennedy, W. J.; Pachter, R.; Vaia, R. A. Toward architected nanocomposites: MXenes and beyond. ACS Nano 2021, 15, 21–28.

[11]

Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.

[12]

Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2T x : MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

[13]

Chen, H. W.; Wen, Y. Y.; Qi, Y. Y.; Zhao, Q.; Qu, L. T.; Li, C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 2020, 30, 1906996.

[14]

Wan, Y. J.; Rajavel, K.; Li, X. M.; Wang, X. Y.; Liao, S. Y.; Lin, Z. Q.; Zhu, P. L.; Sun, R.; Wong, C. P. Electromagnetic interference shielding of Ti3C2T x MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 2021, 408, 127303.

[15]

Zhao, X. F.; Vashisth, A.; Prehn, E.; Sun, W. M.; Shah, S. A.; Habib, T.; Chen, Y. X.; Tan, Z. Y.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2T x (MXene) nanosheet dispersions. Matter 2019, 1, 513–526.

[16]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[17]

Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

[18]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[19]

Xu, H. L.; Yin, X. W.; Li, X. L.; Li, M. H.; Liang, S.; Zhang, L. T.; Cheng, L. F. Lightweight Ti2CT x MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207.

[20]

De France, K.; Zeng, Z. H.; Wu, T. T.; Nyström, G. Functional materials from nanocellulose: Utilizing structure-property relationships in bottom-up fabrication. Adv. Mater. 2021, 33, 2000657.

[21]

Tian, W. Q.; VahidMohammadi, A.; Reid, M. S.; Wang, Z.; Ouyang, L. Q.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M. M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977.

[22]

Liu, S. S.; Low, Z. X.; Xie, Z. L.; Wang, H. T. TEMPO-oxidized cellulose nanofibers: A renewable nanomaterial for environmental and energy applications. Adv. Mater. Technol. 2021, 6, 2001180.

[23]

Wang, B. B.; Zhang, W. Y.; Sun, J. M.; Lai, C. H.; Ge, S. B.; Guo, H. W.; Liu, Y.; Zhang, D. H. A micro/nano-multiscale hierarchical structure strategy to fabricate highly conducting films for electromagnetic interference shielding and energy storage. J. Mater. Chem. A 2023, 11, 8656–8669.

[24]

Guo, Z. Z.; Ren, P. G.; Wang, J.; Tang, J. H.; Zhang, F. D.; Zong, Z.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding. Compos. Part B: Eng. 2022, 236, 109836.

[25]

Yuan, M. S.; Fei, Y.; Zhang, H. R.; Qiu, B. W.; Shen, L.; He, X. R.; Liang, M.; Zhou, S. T.; Chen, Y.; Zou, H. W. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding. Compos. Part B: Eng. 2022, 233, 109622.

[26]

Cai, Z.; Ma, Y. F.; Yun, M. C.; Wang, M.; Tong, Z. M.; Suhr, J.; Xiao, L. T.; Jia, S. T.; Chen, X. Y. Multifunctional MXene/holey graphene films for electromagnetic interference shielding, Joule heating, and photothermal conversion. Compos. Part B: Eng. 2023, 251, 110477.

[27]

Park, J. G.; Louis, J.; Cheng, Q. F.; Bao, J. W.; Smithyman, J.; Liang, R.; Wang, B.; Zhang, C.; Brooks, J. S.; Kramer, L. et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 2009, 20, 415702.

[28]

Li, Y.; Shen, B.; Yi, D.; Zhang, L. H.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 2017, 138, 209–216.

[29]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[30]

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 2017, 113, 55–62.

[31]

Lee, S. H.; Yu, S.; Shahzad, F.; Kim, W. N.; Park, C.; Hong, S. M.; Koo, C. M. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 2017, 9, 13432–13440.

[32]

Shen, B.; Zhai, W. T.; Tao, M. M.; Ling, J. Q.; Zheng, W. G. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391.

[33]

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

[34]

Chaudhary, A.; Kumar, R.; Teotia, S.; Dhawan, S. K.; Dhakate, S. R.; Kumari, S. Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications. J. Mater. Chem. C 2017, 5, 322–332.

[35]

Nguyen, V. T.; Min, B. K.; Yi, Y.; Kim, S. J.; Choi, C. G. MXene(Ti3C2T x )/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020, 393, 124608.

[36]

Lu, S. W.; Xu, W. K.; Xuhai, X.; Ma, K. M.; Wang, X. Q. Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper. J. Alloys Compd. 2014, 606, 171–176.

[37]

Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

[38]

Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

Nano Research
Pages 8233-8242
Cite this article:
Ma Z, He J, Liu S, et al. Gradient layered MXene/Fe3O4@CNTs/TOCNF ultrathin nanocomposite paper exhibiting effective electromagnetic shielding and multifunctionality. Nano Research, 2024, 17(9): 8233-8242. https://doi.org/10.1007/s12274-024-6824-x
Topics:

270

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 May 2024
Revised: 30 May 2024
Accepted: 12 June 2024
Published: 24 July 2024
© Tsinghua University Press 2024
Return