AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lipid nanoparticles deliver mRNA to the blood–brain barrier

Yanina Kuzminich1,2Avraham Shakked3Randi Calkins3Sebastian Rudden2,3Camille Jones3Jessie Doan3Bora Jang3Elisa Schrader Echeverri3Ryan Zenhausern3Liming Lian3David Loughrey3Hannah E. Peck3Rachelle Wiese3Dorothy Koveal3Philip J. Santangelo3James E. Dahlman3( )
George C. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

Lipid nanoparticle without targeting ligands transfects brain endothelial cells upon systemic administration.

Abstract

Lipid nanoparticles (LNPs) have delivered RNA to hepatocytes in patients after intravenous administration. These clinical data support efforts to design LNPs that transfect cells in the central nervous system (CNS). However, delivery to the CNS has been difficult, in large part because quantifying on-target delivery alongside common off-target cell types in adult mice remains challenging. Here we report methods to isolate different cell types from the CNS, and subsequently present mRNA delivery readouts using a liver-detargeted LNP. These data suggest that LNPs without targeting ligands can transfect cerebral endothelial cells in mice after intravenous administration. Given the difficulty of crossing the blood–brain barrier, they also underscore the value of quantifying delivery in the CNS with cell-type resolution instead of whole-tissue resolution.

Electronic Supplementary Material

Download File(s)
6827_ESM.pdf (2.8 MB)

References

[1]

Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416.

[2]

Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Marc, G. P.; Moreira, E. D.; Zerbini, C. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615.

[3]

Adams, D.; Gonzalez-Duarte, A.; O'Riordan, W. D.; Yang, C. C.; Ueda, M.; Kristen, A. V.; Tournev, I.; Schmidt, H. H.; Coelho, T.; Berk, J. L. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018, 379, 11–21.

[4]

Gillmore, J. D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M. L.; Seitzer, J.; O’Connell, D.; Walsh, K. R.; Wood, K. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 2021, 385, 493–502.

[5]

Longhurst, H. J.; Lindsay, K.; Petersen, R. S.; Fijen, L. M.; Gurugama, P.; Maag, D.; Butler, J. S.; Shah, M. Y.; Golden, A.; Xu, Y. X. et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 2024, 390, 432–441.

[6]

Loughrey, D.; Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 2022, 55, 13–23.

[7]

Kim, J.; Eygeris, Y.; Ryals, R. C.; Jozić, A.; Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 2024, 19, 428–447.

[8]

Saunders, N. R. M.; Paolini, M. S.; Fenton, O. S.; Poul, L.; Devalliere, J.; Mpambani, F.; Darmon, A.; Bergère, M.; Jibault, O.; Germain, M. et al. A nanoprimer to improve the systemic delivery of siRNA and mRNA. Nano Lett. 2020, 20, 4264–4269.

[9]

Sago, C. D.; Lokugamage, M. P.; Loughrey, D.; Lindsay, K. E.; Hincapie, R.; Krupczak, B. R.; Kalathoor, S.; Sato, M.; Echeverri, E. S.; Fitzgerald, J. P. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat. Biomed. Eng. 2022, 6, 157–167.

[10]

Kedmi, R.; Veiga, N.; Ramishetti, S.; Goldsmith, M.; Rosenblum, D.; Dammes, N.; Hazan-Halevy, I.; Nahary, L.; Leviatan-Ben-Arye, S.; Harlev, M. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 2018, 13, 214–219.

[11]

Veiga, N.; Goldsmith, M.; Granot, Y.; Rosenblum, D.; Dammes, N.; Kedmi, R.; Ramishetti, S.; Peer, D. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 2018, 9, 4493.

[12]

Marcos-Contreras, O. A.; Greineder, C. F.; Kiseleva, R. Y.; Parhiz, H.; Walsh, L. R.; Zuluaga-Ramirez, V.; Myerson, J. W.; Hood, E. D.; Villa, C. H.; Tombacz, I. et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc. Natl. Acad. Sci. USA 2020, 117, 3405–3414.

[13]

Rurik, J. G.; Tombácz, I.; Yadegari, A.; Fernández, P. O. M.; Shewale, S. V.; Li, L.; Kimura, T.; Soliman, O. Y.; Papp, T. E.; Tam, Y. K. et al. CAR T cells produced in vivo to treat cardiac injury. Science 2022, 375, 91–96.

[14]

Tarab-Ravski, D.; Hazan-Halevy, I.; Goldsmith, M.; Stotsky-Oterin, L.; Breier, D.; Naidu, G. S.; Aitha, A.; Diesendruck, Y.; Ng, B. D.; Barsheshet, H. et al. Delivery of therapeutic RNA to the bone marrow in multiple myeloma using CD38-targeted lipid nanoparticles. Adv. Sci. 2023, 10, 2301377.

[15]

Kauffman, K. J.; Oberli, M. A.; Dorkin, J. R.; Hurtado, J. E.; Kaczmarek, J. C.; Bhadani, S.; Wyckoff, J.; Langer, R.; Jaklenec, A.; Anderson, D. G. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdtomato reporter mouse. Mol. Ther.-Nucl. Acids 2018, 10, 55–63.

[16]

Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

[17]

LoPresti, S. T.; Arral, M. L.; Chaudhary, N.; Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 2022, 345, 819–831.

[18]

Qiu, M.; Tang, Y.; Chen, J. J.; Muriph, R.; Ye, Z. F.; Huang, C. F.; Evans, J.; Henske, E. P.; Xu, Q. B. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2116271119.

[19]

Radmand, A.; Lokugamage, M. P.; Kim, H.; Dobrowolski, C.; Zenhausern, R.; Loughrey, D.; Huayamares, S. G.; Hatit, M. Z. C.; Ni, H. Z.; Del Cid, A. et al. The transcriptional response to lung-targeting lipid nanoparticles in vivo. Nano Lett. 2023, 23, 993–1002.

[20]

Radmand, A.; Kim, H.; Beyersdorf, J.; Dobrowolski, C. N.; Zenhausern, R.; Paunovska, K.; Huayamares, S. G.; Hua, X. W.; Han, K. Y.; Loughrey, D. et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc. Natl. Acad. Sci. USA 2024, 121, e2307801120.

[21]

Tsoi, K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.

[22]

GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897.

[23]

Nabhan, J. F.; Wood, K. M.; Rao, V. P.; Morin, J.; Bhamidipaty, S.; LaBranche, T. P.; Gooch, R. L.; Bozal, F.; Bulawa, C. E.; Guild, B. C. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich's ataxia. Sci. Rep. 2016, 6, 20019.

[24]

Tanaka, H.; Nakatani, T.; Furihata, T.; Tange, K.; Nakai, Y.; Yoshioka, H.; Harashima, H.; Akita, H. In vivo introduction of mRNA encapsulated in lipid nanoparticles to brain neuronal cells and astrocytes via intracerebroventricular administration. Mol. Pharmaceutics 2018, 15, 2060–2067.

[25]

Han, E. L.; Padilla, M. S.; Palanki, R.; Kim, D.; Mrksich, K.; Li, J. J.; Tang, S.; Yoon, I. C.; Mitchell, M. J. Predictive high-throughput platform for dual screening of mRNA lipid nanoparticle blood-brain barrier transfection and crossing. Nano Lett. 2024, 24, 1477–1486.

[26]

Tiwari, P. M.; Vanover, D.; Lindsay, K. E.; Bawage, S. S.; Kirschman, J. L.; Bhosle, S.; Lifland, A. W.; Zurla, C.; Santangelo, P. J. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 2018, 9, 3999.

[27]

Dong, Y. Z.; Love, K. T.; Dorkin, J. R.; Sirirungruang, S.; Zhang, Y. L.; Chen, D. L.; Bogorad, R. L.; Yin, H.; Chen, Y.; Vegas, A. J. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl. Acad. Sci. USA 2014, 111, 3955–3960.

[28]

Belliveau, N. M.; Huft, J.; Lin, P. J. C.; Chen, S.; Leung, A. K. K.; Leaver, T. J.; Wild, A. W.; Lee, J. B.; Taylor, R. J.; Tam, Y. K. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucl. Acids 2012, 1, e37.

[29]

Chen, D. L.; Love, K. T.; Chen, Y.; Eltoukhy, A. A.; Kastrup, C.; Sahay, G.; Jeon, A.; Dong, Y. Z.; Whitehead, K. A.; Anderson, D. G. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 2012, 134, 6948–6951.

[30]

Hatit, M. Z. C.; Lokugamage, M. P.; Dobrowolski, C. N.; Paunovska, K.; Ni, H. Z.; Zhao, K.; Vanover, D.; Beyersdorf, J.; Peck, H. E.; Loughrey, D. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 2022, 17, 310–318.

[31]

Lokugamage, M. P.; Vanover, D.; Beyersdorf, J.; Hatit, M. Z. C.; Rotolo, L.; Echeverri, E. S.; Peck, H. E.; Ni, H. Z.; Yoon, J. K.; Kim, Y. T. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 2021, 5, 1059–1068.

[32]

Rotolo, L.; Vanover, D.; Bruno, N. C.; Peck, H. E.; Zurla, C.; Murray, J.; Noel, R. K.; O'Farrell, L.; Araínga, M.; Orr-Burks, N. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 2023, 22, 369–379.

[33]

Blanchard, E. L.; Vanover, D.; Bawage, S. S.; Tiwari, P. M.; Rotolo, L.; Beyersdorf, J.; Peck, H. E.; Bruno, N. C.; Hincapie, R.; Michel, F. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 2021, 39, 717–726.

[34]

Sago, C. D.; Lokugamage, M. P.; Paunovska, K.; Vanover, D. A.; Monaco, C. M.; Shah, N. N.; Castro, M. G.; Anderson, S. E.; Rudoltz, T. G.; Lando, G. N. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl. Acad. Sci. USA 2018, 115, E9944–E9952.

[35]

Hussain, R. Z.; Miller-Little, W. A.; Doelger, R.; Cutter, G. R.; Loof, N.; Cravens, P. D.; Stüve, O. Defining standard enzymatic dissociation methods for individual brains and spinal cords in EAE. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e437.

[36]

Crouch, E. E.; Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 2018, 13, 738–751.

[37]

Schoenmaker, L.; Witzigmann, D.; Kulkarni, J. A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D. J. A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586

[38]

Paunovska, K.; Loughrey, D.; Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280.

[39]

Dilliard, S. A.; Cheng, Q.; Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA 2021, 118, e2109256118.

[40]

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005, 152, 36–51.

Nano Research
Pages 9126-9134
Cite this article:
Kuzminich Y, Shakked A, Calkins R, et al. Lipid nanoparticles deliver mRNA to the blood–brain barrier. Nano Research, 2024, 17(10): 9126-9134. https://doi.org/10.1007/s12274-024-6827-7
Topics:
Part of a topical collection:

604

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 March 2024
Revised: 05 June 2024
Accepted: 13 June 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return