AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A polymyxin B loaded hypoxia-responsive liposome with improved biosafety for efficient eradication of bacterial biofilms

Fang Liu1,§Lingyun Zou1,§Yongcheng Chen1Zuolong Liu1Yue Huang1Qiao Jin1( )Jian Ji1,2( )
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China

§ Fang Liu and Lingyun Zou contributed equally to this work.

Show Author Information

Graphical Abstract

The polymyxin B (PMB) loaded hypoxia-responsive liposomes (HRL-PMB) can effectively release PMB in hypoxic biofilms, which improves the biosafety of PMB while preserving the intrinsic bactericidal ability.

Abstract

Biofilm-associated bacterial infection brings serious threats to global public health owing to serious antibiotic resistance. It is urgently needed to develop innovative strategies to combat biofilm-associated bacterial infections. Polymyxins stand out as the last line of defense against Gram-negative bacteria. However, serious nephrotoxicity of polymyxins severely limits their clinical utility. Herein, a hypoxia-responsive liposome is designed as the nanocarrier of polymyxin B (PMB) to combat biofilms developed by Gram-negative bacteria. A metronidazole modified lipid (hypoxia-responsive lipid (HRLipid)) is synthesized to fabricate hypoxia-responsive liposomes (HRLip). PMB loaded hypoxia-responsive liposomes (HRL-PMB) is then prepared to mitigate the nephrotoxicity of PMB while preserving its excellent bactericidal activity. HRL-PMB shows very low hemolysis and cytotoxicity due to liposomal encapsulation of PMB. PMB can be readily released from HRL-PMB in response to hypoxic biofilm microenvironment, exerting its bactericidal activity to realize biofilm eradication. The excellent in vivo antibiofilm ability of HRL-PMB is confirmed by a Pseudomonas aeruginosa infected zebrafish model and a P. aeruginosa pneumonia infection model. Meanwhile, HRL-PMB can greatly reduce the nephrotoxicity of PMB after intravenous injection. The hypoxia-sensitive liposomes held great promise to improve the biosafety of highly toxic antibiotics while preserving their intrinsic bactericidal ability, which may provide an innovative strategy for combating biofilm-associated infections.

Electronic Supplementary Material

Download File(s)
6828_ESM.pdf (884.6 KB)

References

[1]

Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108.

[2]

Nadell, C. D.; Xavier, J. B.; Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2009, 33, 206–224.

[3]

Chua, S. L.; Yam, J. K. H.; Hao, P. L.; Adav, S. S.; Salido, M. M.; Liu, Y.; Givskov, M.; Sze, S. K.; Tolker-Nielsen, T.; Yang, L. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat. Commun. 2016, 7, 10750.

[4]

Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.

[5]

Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886.

[6]

Zou, L. Y.; Hu, D. F.; Wang, F. J.; Jin, Q.; Ji, J. The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms. Nano Res. 2022, 15, 1636–1644.

[7]

Guo, N.; Xia, Y.; Duan, Y. X.; Wu, Q. X.; Xiao, L.; Shi, Y. X.; Yang, B.; Liu, Y. Self-enhanced photothermal-chemodynamic antibacterial agents for synergistic anti-infective therapy. Chin. Chem. Lett. 2023, 34, 107542.

[8]

Chen, S. H.; Zhang, Z. S.; Wei, L.; Fan, Z. X.; Li, Y.; Wang, X. Z.; Feng, T. M.; Huang, H. Y. Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(III) photocatalyst. Chin. Chem. Lett. 2023, 34, 108412.

[9]

Zhang, H. X.; Zou, Y.; Lu, K. Y.; Wu, Y.; Lin, Y. C.; Cheng, J. J.; Liu, C. X.; Chen, H.; Zhang, Y. X.; Yu, Q. A nanoplatform with oxygen self-supplying and heat-sensitizing capabilities enhances the efficacy of photodynamic therapy in eradicating multidrug-resistant biofilms. J. Mater. Sci. Technol. 2024, 169, 209–219.

[10]

Zou, Y.; Zhang, H. X.; Zhang, Y. H.; Wu, Y.; Cheng, J. J.; Jia, D. X.; Liu, C. X.; Chen, H.; Zhang, Y. X.; Yu, Q. A near-infrared light-triggered nano-domino system for efficient biofilm eradication: Activation of dispersing and killing functions by generating nitric oxide and peroxynitrite via cascade reactions. Acta Biomater. 2023, 170, 389–400.

[11]

Cheng, J. J.; Zhang, H. X.; Lu, K. Y.; Zou, Y.; Jia, D. X.; Yang, H.; Chen, H.; Zhang, Y. X.; Yu, Q. Bi-functional quercetin/copper nanoparticles integrating bactericidal and anti-quorum sensing properties for preventing the formation of biofilms. Biomater. Sci. 2024, 12, 1788–1800.

[12]

Huang, Y.; Gao, Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

[13]

Huang, Y.; Chen, Y. C.; Lu, Z. Y.; Yu, B.; Zou, L. Y.; Song, X. H.; Han, H. J.; Jin, Q.; Ji, J. Facile synthesis of self-targeted Zn2+-gallic acid nanoflowers for specific adhesion and elimination of gram-positive bacteria. Small 2023, 19, 2302578.

[14]

Ma, X. J.; Tang, W. J.; Yang, R. Bioinspired nanomaterials for the treatment of bacterial infections. Nano Res. 2024, 17, 691–714.

[15]

Yang, Z. R.; Xiong, J. Y.; Wei, S. R.; Du, K. H.; Qin, H. M.; Ma, T.; Lv, N. N.; Yu, X. Y.; Jiang, H.; Zhu, J. T. Metalloprotein-inspired supramolecular photodynamic nanodrugs by multicomponent coordination for deep penetration and enhanced biofilm eradication. Nano Res. 2023, 16, 7312–7322.

[16]

Chai, M.Y.; Gao, Y. F.; Liu, J.; Deng, Y. Y.; Hu, D. F.; Jin, Q.; Ji, J. Polymyxin B-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial activity for acute lung infection management. Adv. Healthcare Mater. 2020, 9, 1901542.

[17]

Mohapatra, S. S.; Dwibedy, S. K.; Padhy, I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 2021, 46, 85.

[18]

Zavascki, A. P.; Goldani, L. Z.; Li, J.; Nation, R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215.

[19]

Dong, H. H.; Xiang, Q. J.; Gu, Y. H.; Wang, Z. S.; Paterson, N. G.; Stansfeld, P. J.; He, C.; Zhang, Y. Z.; Wang, W. J.; Dong, C. J. Structural basis for outer membrane lipopolysaccharide insertion. Nature 2014, 511, 52–56.

[20]

Nang, S. C.; Azad, M. A. K.; Velkov, T.; Zhou, Q.; Li, J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol. Rev. 2021, 73, 679–728.

[21]

Justo, J. A.; Bosso, J. A. Adverse reactions associated with systemic polymyxin therapy. Pharmacotherapy 2015, 35, 28–33.

[22]

Kelesidis, T.; Falagas, M. E. The safety of polymyxin antibiotics. Expert Opin. Drug Saf. 2015, 14, 1687–1701.

[23]

Velkov, T.; Dai, C. S.; Ciccotosto, G. D.; Cappai, R.; Hoyer, D.; Li, J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol. Ther. 2018, 181, 85–90.

[24]

Yun, B.; Azad, M. A. K.; Wang, J.; Nation, R. L.; Thompson, P. E.; Roberts, K. D.; Velkov, T.; Li, J. Imaging the distribution of polymyxins in the kidney. J. Antimicrob. Chemother. 2015, 70, 827–829.

[25]

Jasim, R.; Schneider, E. K.; Han, M. L.; Azad, M. A. K.; Hussein, M.; Nowell, C.; Baker, M. A.; Wang, J. P.; Li, J.; Velkov, T. A fresh shine on cystic fibrosis inhalation therapy: Antimicrobial synergy of polymyxin b in combination with silver nanoparticles. J. Biomed. Nanotechnol. 2017, 13, 447–457.

[26]

Lakshminarayanan, R.; Ye, E. Y.; Young, D. J.; Li, Z. B.; Loh, X. J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthcare Mater. 2018, 7, 1701400.

[27]

Insua, I.; Majok, S.; Peacock, A. F. A.; Krachler, A. M.; Fernandez-Trillo, F. Preparation and antimicrobial evaluation of polyion complex (PIC) nanoparticles loaded with polymyxin B. Eur. Polym. J. 2017, 87, 478–486.

[28]

Insua, I.; Zizmare, L.; Peacock, A. F. A.; Krachler, A. M.; Fernandez-Trillo, F. Polymyxin B containing polyion complex (PIC) nanoparticles: Improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component. Sci. Rep. 2017, 7, 9396.

[29]

Obuobi, S.; Voo, Z. X.; Low, M. W.; Czarny, B.; Selvarajan, V.; Ibrahim, N. L.; Yang, Y. Y.; Ee, P. L. R. Phenylboronic acid functionalized polycarbonate hydrogels for controlled release of polymyxin B in Pseudomonas aeruginosa infected burn wounds. Adv. Healthcare Mater. 2018, 7, 1701388.

[30]

Rumbaugh, K. P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586.

[31]

Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575.

[32]

Wilton, M.; Charron-Mazenod, L.; Moore, R.; Lewenza, S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 60, 544–553.

[33]

Schlafer, S.; Baelum, V.; Dige, I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions. J. Microbiol. Methods 2018, 152, 194–200.

[34]

Hu, Y. L.; Ruan, X. H.; Lv, X. Y.; Xu, Y.; Wang, W. J.; Cai, Y.; Ding, M.; Dong, H.; Shao, J. J.; Yang, D. L. et al. Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection. Nano Today 2022, 46, 101602.

[35]

Gao, Y. F.; Wang, J.; Chai, M. Y.; Li, X.; Deng, Y. Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686–5699.

[36]

Chen, Y. C.; Huang, Y.; Jin, Q. Polymeric nanoplatforms for the delivery of antibacterial agents. Macromol. Chem. Phys. 2022, 223, 2100440.

[37]

Chen, Y. C.; Gao, Y. F.; Huang, Y.; Jin, Q.; Ji, J. Inhibiting quorum sensing by active targeted pH-sensitive nanoparticles for enhanced antibiotic therapy of biofilm-associated bacterial infections. ACS Nano 2023, 17, 10019–10032.

[38]

Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.

[39]

Xiu, W.; Wan, L.; Yang, K. L.; Li, X.; Yuwen, L. H.; Dong, H.; Mou, Y. B.; Yang, D. L.; Wang, L. H. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 2022, 13, 3875.

[40]

Liu, H. M.; Xie, Y. D.; Zhang, Y. F.; Cai, Y. F.; Li, B. Y.; Mao, H. L.; Liu, Y. G.; Lu, J.; Zhang, L. Z.; Yu, R. T. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials 2017, 121, 130–143.

[41]

Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417.

[42]

Watson, D.; Macdermot, J.; Wilson, R.; Cole, P. J.; Taylor, G. W. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 1986, 159, 309–313.

[43]

Haffter, P.; Granato, M.; Brand, M.; Mullins, M. C.; Hammerschmidt, M.; Kane, D. A.; Odenthal, J.; Van Eeden, F. J. M.; Jiang, Y. J.; Heisenberg, C. P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996, 123, 1–36.

[44]

Díaz-Pascual, F.; Ortíz-Severín, J.; Varas, M. A.; Allende, M. L.; Chávez, F. P. In vivo host–pathogen interaction as revealed by global proteomic profiling of zebrafish larvae. Front. Cell. Infect. Microbiol. 2017, 7, 334.

[45]

Nogaret, P.; El Garah, F.; Blanc-Potard, A. B. A novel infection protocol in zebrafish embryo to assess Pseudomonas aeruginosa virulence and validate efficacy of a quorum sensing inhibitor in vivo. Pathogens 2021, 10, 401.

[46]

Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745.

[47]

Hu, D. F.; Zou, L. Y.; Yu, W. J.; Jia, F.; Han, H. J.; Yao, K.; Jin, Q.; Ji, J. Relief of biofilm hypoxia using an oxygen nanocarrier: A new paradigm for enhanced antibiotic therapy. Adv. Sci. 2020, 7, 2000398.

[48]

Kellum, J. A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H. J. Acute kidney injury. Nat. Rev. Dis. Primers 2021, 7, 52.

Nano Research
Pages 8325-8336
Cite this article:
Liu F, Zou L, Chen Y, et al. A polymyxin B loaded hypoxia-responsive liposome with improved biosafety for efficient eradication of bacterial biofilms. Nano Research, 2024, 17(9): 8325-8336. https://doi.org/10.1007/s12274-024-6828-6
Topics:

252

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 April 2024
Revised: 06 June 2024
Accepted: 13 June 2024
Published: 05 July 2024
© Tsinghua University Press 2024
Return