AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sulfonated carbon dots modified IrO2 nanosheet as durable and high-efficient electrocatalyst for boosting acidic oxygen evolution reaction

Mengjie Ma1Wenxiang Zhu1Fan Liao1( )Kui Yin1Hui Huang1Kun Feng1Dongdong Gao1Jinxin Chen1Zenan Li1Jun Zhong1Lai Xu1( )Yang Liu1( )Mingwang Shao1( )Zhenhui Kang1,2( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao 999078, China
Show Author Information

Graphical Abstract

Sulfonated carbon dots (SCDs) with charge storage capacity can regulate charge distribution of IrO2 nanosheets (IrO2 NS), improve the electron transfer rate of IrO2 NS, and further promote the oxygen evolution reaction (OER) reaction.

Abstract

Oxygen evolution reaction (OER) plays a crucial role in developing energy conversion and adjusting electronic structure of the electrocatalysts can effectively improve the catalytic activity and stability. However, it is a challenge to adjust the electronic structure on two-dimensional iridium dioxide nanosheets (IrO2 NS), which have the advantages of high atom utilization. Here, we regulate the surface properties of IrO2 NS through sulfonated carbon dots (SCDs) to promote the OER catalytic process. The catalyst IrO2 NS/SCDs-2 exhibited excellent catalytic activity with a lower overpotential of 180 mV than IrO2 NS (230 mV) at the current density of 10 mA·cm−2 in a 0.5 M H2SO4 solution. And after 160 h of stability testing, the overpotential of IrO2 NS/SCDs-2 only decreased by 4 mV. Moreover, transient potential scanning test can visually demonstrate that the addition of SCDs improves the conductivity of the catalyst and increases the electron transfer rate.

Electronic Supplementary Material

Download File(s)
6829_ESM.pdf (2.8 MB)

References

[1]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[2]

Zhu, M. W.; Shao, Q.; Qian, Y.; Huang, X. Q. Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy 2019, 56, 330–337.

[3]

Zhao, G. Q.; Luo, Z. X.; Zhang, B. H.; Chen, Y. P.; Cui, X. Z.; Chen, J.; Liu, Y. F.; Gao, M. X.; Pan, H. G.; Sun, W. P. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Res. 2023, 16, 4767–4774.

[4]

Abbasi, R.; Setzler, B. P.; Lin, S. S.; Wang, J. H.; Zhao, Y.; Xu, H.; Pivovar, B.; Tian, B. Y.; Chen, X.; Wu, G. et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, 1805876.

[5]

Lyu, S. L.; Guo, C. X.; Wang, J. N.; Li, Z. J.; Yang, B.; Lei, L. C.; Wang, L. P.; Xiao, J. P.; Zhang, T.; Hou, Y. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 2022, 13, 6171.

[6]

Zhang, D. F.; Li, M. N.; Yong, X.; Song, H. Q.; Waterhouse, G. I. N.; Yi, Y. F.; Xue, B. J.; Zhang, D. L.; Liu, B. Z.; Lu, S. Y. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517.

[7]

Weng, Y. X.; Wang, K. Y.; Li, S. Y.; Wang, Y. X.; Lei, L. F.; Zhuang, L. Z.; Xu, Z. High-valence-manganese driven strong anchoring of iridium species for robust acidic water oxidation. Adv. Sci. 2023, 10, 2205920.

[8]

Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

[9]

Cui, P.; Wang, T. H.; Zhang, X. H.; Wang, X. Y.; Wu, H. F.; Wu, Y. K.; Ba, C. Y.; Zeng, Y. Q.; Liu, P.; Jiang, J. Q. Rapid formation of epitaxial oxygen evolution reaction catalysts on dendrites with high catalytic activity and stability. ACS Nano 2023, 17, 22268–22276.

[10]

Han, N.; Feng, S. H.; Liang, Y.; Wang, J.; Zhang, W.; Guo, X. L.; Ma, Q. R.; Liu, Q.; Guo, W.; Zhou, Z. Y. et al. Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv. Funct. Mater. 2023, 33, 2208399.

[11]

Chen, X. J.; Liao, W. Y.; Zhong, M. X.; Chen, J. J.; Yan, S.; Li, W. M.; Wang, C.; Chen, W.; Lu, X. F. Rational design of robust iridium-ceria oxide-carbon nanofibers to boost oxygen evolution reaction in both alkaline and acidic media. Nano Res. 2023, 16, 7724–7732.

[12]

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

[13]

Li, T.; Kasian, O.; Cherevko, S.; Zhang, S.; Geiger, S.; Scheu, C.; Felfer, P.; Raabe, D.; Gault, B.; Mayrhofer, K. J. J. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 2018, 1, 300–305.

[14]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[15]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[16]

Ledendecker, M.; Geiger, S.; Hengge, K.; Lim, J.; Cherevko, S.; Mingers, A. M.; Göhl, D.; Fortunato, G. V.; Jalalpoor, D.; Schüth, F. et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Res. 2019, 12, 2275–2280.

[17]

Sun, J.; Xue, H.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Zhang, J. W.; Wang, Q. Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 19435–19441.

[18]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[19]

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiO x core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

[20]

Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

[21]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[22]

Ma, Y.; Li, B.; Yang, S. B. Ultrathin two-dimensional metallic nanomaterials. Mater. Chem. Front. 2018, 2, 456–467.

[23]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[24]

Dang, Q.; Lin, H. P.; Fan, Z. L.; Ma, L.; Shao, Q.; Ji, Y. J.; Zheng, F. F.; Geng, S. Z.; Yang, S. Z.; Kong, N. N. et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 2021, 12, 6007.

[25]

Yang, S. W.; Sun, J.; Li, X. B.; Zhou, W.; Wang, Z. Y.; He, P.; Ding, G. Q.; Xie, X. M.; Kang, Z. H.; Jiang, M. H. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667.

[26]

Liu, Y.; Yang, Y. P.; Peng, Z. K.; Liu, Z. Y.; Chen, Z. M.; Shang, L.; Lu, S. Y.; Zhang, T. R. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy 2019, 65, 104023.

[27]

Pan, Z. L.; Zhang, T.; Qian, X. F.; Zhao, Y. X. Probing the fast transformation mechanism of Cr (VI) on carbon dots with structural defects and surface oxygen functional groups. Appl. Catal. B: Environ. 2023, 330, 122571.

[28]

Han, Y. Z.; Tang, D.; Yang, Y. M.; Li, C. X.; Kong, W. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Non-metal single/dual doped carbon quantum dots: A general flame synthetic method and electro-catalytic properties. Nanoscale 2015, 7, 5955–5962.

[29]

Zhou, Y. J.; Qi, H. H.; Wu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Amino modified carbon dots with electron sink effect increase interface charge transfer rate of Cu-based electrocatalyst to enhance the CO2 conversion selectivity to C2H4. Adv. Funct. Mater. 2022, 32, 2113335.

[30]

Feng, K.; Zhang, D.; Liu, F. F.; Li, H.; Xu, J. B.; Xia, Y. J.; Li, Y. Y.; Lin, H. P.; Wang, S. A.; Shao, M. W. et al. Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur-treated Fe-based metal-organic-frameworks. Adv. Energy Mater. 2020, 10, 2000184.

[31]

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

[32]

Wang, L. P.; Wu, X. Q.; Guo, S. J.; Han, M. M.; Zhou, Y. J.; Sun, Y.; Huang, H.; Liu, Y.; Kang, Z. H. Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2017, 5, 2717–2723.

[33]

Zhu, W. X.; Chen, S. Y.; Liao, F.; Zhao, X. D.; Shi, H. X.; Shi, Y. D.; Xu, L.; Shao, Q.; Kang, Z. H.; Shao, M. W. Electric field polarized sulfonated carbon dots/NiFe layerd double hydroxide as highly efficient electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 420, 129690.

[34]

Dang, Q.; Sun, Y. Y.; Wang, X.; Zhu, W. X.; Chen, Y.; Liao, F.; Huang, H.; Shao, M. W. Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Appl. Catal. B: Environ. 2019, 257, 117905.

[35]
Qin, K. Y.; Yu, H.; Zhu, W. X.; Zhou, Y. J.; Guo, Z. Y.; Shao, Q.; Wu, Y. B.; Wang, X. P.; Li, Y. Y.; Ji, Y. J. et al. 1D monoclinic Ir xRu1− xO2 solid solution with Ru-enhanced electrocatalytic activity for acidic oxygen evolution reaction. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402226.
[36]

Wang, J. X.; Li, J. C.; Li, Z. N.; Wu, J.; Si, H. L.; Wu, Y. B.; Guo, Z. Y.; Wang, X. P.; Liao, F.; Huang, H. et al. In-situ study of the hydrogen peroxide photoproduction in seawater on carbon dot-based metal-free catalyst under operation condition. Nano Res. 2024, 17, 5956–5964.

[37]

Savinell, R. F.; Zeller, R. L.; Adams, J. A. Electrochemically active surface area: Voltammetric charge correlations for ruthenium and iridium dioxide electrodes. J. Electrochem. Soc. 1990, 137, 489–494.

[38]

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

[39]

Sun, W.; Wang, Z. Q.; Zhou, Z. H.; Wu, Y. Y.; Zaman, W. Q.; Tariq, M.; Cao, L. M.; Gong, X. Q.; Yang, J. A promising engineering strategy for water electro-oxidation iridate catalysts via coordination distortion. Chem. Commun. 2019, 55, 5801–5804.

[40]

Liao, F.; Yin, K.; Ji, Y. J.; Zhu, W. X.; Fan, Z. L.; Li, Y. Y.; Zhong, J.; Shao, M. W.; Kang, Z. H.; Shao, Q. Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nat. Commun. 2023, 14, 1248.

[41]

Zheng, X. Z.; Qin, M. K.; Ma, S. X.; Chen, Y. Z.; Ning, H. H.; Yang, R.; Mao, S. J.; Wang, Y. Strong oxide-support interaction over IrO2/V2O5 for efficient pH-universal water splitting. Adv. Sci. 2022, 9, 2104636.

[42]

Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

[43]

Wang, Z. Q.; Zheng, Z. Q.; Xue, Y. R.; He, F.; Li, Y. L. Acidic water oxidation on quantum dots of IrO x /graphdiyne. Adv. Energy Mater. 2021, 11, 2101138.

[44]

Chen, J. Y.; Cui, P. X.; Zhao, G. Q.; Rui, K.; Lao, M. M.; Chen, Y. P.; Zheng, X. S.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X. et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 12540–12544.

[45]

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

[46]

Li, L. L.; Sun, H. N.; Hu, Z. W.; Zhou, J.; Huang, Y. C.; Huang, H. L.; Song, S. Z.; Pao, C. W.; Chang, Y. C.; Komarek, A. C. et al. In situ/ operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 2021, 31, 2104746.

[47]

Li, N.; Cai, L.; Wang, C.; Lin, Y.; Huang, J. Z.; Sheng, H. Y.; Pan, H. B.; Zhang, W.; Ji, Q. Q.; Duan, H. L. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 2021, 143, 18001–18009.

[48]

Yang, N. W.; Tian, S. N.; Feng, Y. J.; Hu, Z. Y.; Liu, H.; Tian, X. L.; Xu, L.; Hu, C. Q.; Yang, J. Introducing high-valence iridium single atoms into bimetal phosphides toward high-efficiency oxygen evolution and overall water splitting. Small 2023, 19, 2207253.

Nano Research
Pages 8017-8024
Cite this article:
Ma M, Zhu W, Liao F, et al. Sulfonated carbon dots modified IrO2 nanosheet as durable and high-efficient electrocatalyst for boosting acidic oxygen evolution reaction. Nano Research, 2024, 17(9): 8017-8024. https://doi.org/10.1007/s12274-024-6829-5
Topics:

521

Views

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 April 2024
Revised: 07 June 2024
Accepted: 14 June 2024
Published: 12 July 2024
© Tsinghua University Press 2024
Return