Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Boring holes in Au nanoplates by active surface etching

Haiyang Hu1,3Yuntao Wang1Qian Wang3,4Xudong Peng3,4An Su3,4Hong Wang2()Hongyu Chen3,4()
Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
Show Author Information

Graphical Abstract

View original image Download original image
The boring etching mode creates holes in Au nanoplates, in contrast to the conventional etching mode that targets the corner sites and makes nanostructures rounder, and the previous sharpening etching mode targets the edges when using neutral 2-naphthalenethiol (NT) as the ligand. The charge repulsion among the ligand 2-mercapto-5-benzimidazolecarboxylic acid (MBIA) was found to be the critical factor responsible for the unique mode of etching.

Abstract

In contrast to the conventional etching that makes nanoparticles rounder and our previous sharpening etching mode that causes serrated edges, here, we developed a new boring etching mode that targets the faces of Au nanoplates to make holes. The critical factors are the pre-incubation step with the ligand 2-mercapto-5-benzimidazolecarboxylic acid (MBIA) and the subsequent removal of excess ligands in the solution. Thus, etching is focused onto the few sites with initial loss of ligands, which cannot be quickly replaced. The choice of ligand MBIA is also of importance, as it carries negative charge and repels each other. Its inability of forming a dense layer probably plays a critical role in the site-selectivity for faces, because ligands at the higher curvature edges and corners are expected to have less repulsion. The etching results from the comproportionation reaction between Au3+ and Au0 in the nanoplates, where Br coordination to Au and the extra stabilization from cetyltrimethylammonium bromide (CTAB) are essential. We believe that the ability of boring holes is an important tool for future synthetic designs.

Electronic Supplementary Material

Download File(s)
6830_ESM.pdf (784.6 KB)

References

[1]

Yang, K. L.; Dong, H.; Xiu, W. J.; Yuwen, L. H.; Mou, Y. B.; Yin, Z. W.; Liang, B.; Wang, L. H. Self-adaptive antibiofilm effect and immune regulation by hollow Cu2MoS4 nanospheres for treatment of implant infections. ACS Appl. Mater. Interfaces 2023, 15, 18720–18733.

[2]

Zhao, P. F.; Liu, S. M.; Koriath, A. T.; Gao, X. H. Partial magneto-endosomalysis for cytosolic delivery of antibodies. Bioconjugate Chem. 2022, 33, 363–368.

[3]

Gao, X. H. Nanometer puzzle ball, controlled drug release just got more options. Matter 2020, 3, 1827–1828.

[4]

Dong, C.; Fang, X. Y.; Xiong, J. R.; Zhang, J. J.; Gan, H. Y.; Song, C. Y.; Wang, L. H. Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells. ACS Nano 2022, 16, 14055–14065.

[5]

Zhao, T. H.; Meng, D. J.; Hu, Z. J.; Sun, W. J.; Ji, Y. L.; Han, J. L.; Jin, X.; Wu, X. C.; Duan, P. F. Enhanced chiroptic properties of nanocomposites of achiral plasmonic nanoparticles decorated with chiral dye-loaded micelles. Nat. Commun. 2023, 14, 81.

[6]

Liu, H.; Zhao, J. L.; Fu, S. J.; Xue, D. N.; Zhao, Z. Q.; Gu, C. J.; Wei, G. D.; Jiang, T. Multifunctional Ag-decorated core–shell heterojunction of red phosphorus/silicon carbide nanowires for highly sensitive SERS-based monitoring of ibrutinib. Surf. Interfaces 2024, 46, 104161.

[7]

Kim, H. Y.; Jun, M.; Joo, S. H.; Lee, K. Intermetallic nanoarchitectures for efficient electrocatalysis. ACS Nanosci. Au 2023, 3, 28–36.

[8]

Lin, W. H.; Lu, Y. H.; Hsu, Y. J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J. Colloid Interface Sci. 2014, 418, 87–94.

[9]

Zhang, F.; Wu, N.; Zhu, J.; Zhao, J.; Weng, G. J.; Li, J. J.; Zhao, J. W. Au@AuAg yolk–shell triangular nanoplates with controlled interior gap for the improved surface-enhanced Raman scattering of rhodamine 6G. Sens. Actuators B: Chem. 2018, 271, 174–182.

[10]

Wang, Y. W.; He, J. T.; Liu, C. C.; Chong, W. H.; Chen, H. Y. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem., Int. Ed. 2015, 54, 2022–2051.

[11]

Li, Y. W.; Lin, H. X.; Zhou, W. J.; Sun, L.; Samanta, D.; Mirkin, C. A. Corner-, edge-, and facet-controlled growth of nanocrystals. Sci. Adv. 2021, 7, eabf1410.

[12]

Jiang, T. T.; Zong, J. P.; Feng, Y. H.; Chen, H. Y. Combining the curvature and ligand effects for regioselective growth on Au nano-bipyramids. Precis. Chem. 2023, 1, 94–99.

[13]

Xiao, R. X.; Jia, J.; Wang, R. X.; Feng, Y. H.; Chen, H. Y. Strong ligand control for noble metal nanostructures. Acc. Chem. Res. 2023, 56, 1539–1552.

[14]

Feng, Y. H.; Wang, Y. W.; He, J. T.; Song, X. H.; Tay, Y. Y.; Hng, H. H.; Ling, X. Y.; Chen, H. Y. Achieving site-specificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624–7627.

[15]

Wang, Y.; He, J. T.; Mu, X. K.; Wang, D.; Zhang, B. W.; Shen, Y. D.; Lin, M.; Kübel, C.; Huang, Y. Z.; Chen, H. Y. Solution growth of ultralong gold nanohelices. ACS Nano 2017, 11, 5538–5546.

[16]

Tian, X. L.; Zong, J. P.; Zhou, Y. S.; Chen, D. P.; Jia, J.; Li, S. B.; Dong, X. C.; Feng, Y. H.; Chen, H. Y. Designing caps for colloidal Au nanoparticles. Chem. Sci. 2021, 12, 3644–3650.

[17]

Yang, S. H.; Zheng, Y. L.; He, G. Y.; Zhang, M. M.; Li, H. Y.; Wang, Y. W.; Chen, H. Y. From flat to deep concave: An unusual mode of facet control. Chem. Commun. 2022, 58, 6128–6131.

[18]

Su, A.; Wang, Q.; Huang, L. P.; Zheng, Y. L.; Wang, Y. W.; Chen, H. Y. Gold nanohexagrams via active surface growth under sole CTAB control. Nanoscale 2023, 15, 14858–14865.

[19]

Zheng, Y. L.; Li, X. Y.; Huang, L. P.; Li, X. X.; Yang, S. H.; Wang, Q.; Du, J. X.; Wang, Y. W.; Ding, W. Q.; Gao, B. et al. Homochiral nanopropeller via chiral active surface growth. J. Am. Chem. Soc. 2024, 146, 410–418.

[20]

Feng, N.; Shen, J. J.; Chen, Y.; Li, C.; Hu, Y. L.; Zhang, L.; Chen, S. F.; Fan, Q. L.; Huang, W.; Wang, L. H. Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate. Nano Res. 2020, 13, 3364–3370.

[21]

Wen, T.; Zhang, H.; Tang, X. P.; Chu, W. G.; Liu, W. Q.; Ji, Y. L.; Hu, Z. J.; Hou, S.; Hu, X. N.; Wu, X. C. Copper ion assisted reshaping and etching of gold nanorods: Mechanism studies and applications. J. Phys. Chem. C 2013, 117, 25769–25777.

[22]

Tan, R. L. S.; Chong, W. H.; Feng, Y. H.; Song, X. H.; Tham, C. L.; Wei, J.; Lin, M.; Chen, H. Y. Nanoscrews: Asymmetrical etching of silver nanowires. J. Am. Chem. Soc. 2016, 138, 10770–10773.

[23]

Choi, S.; Park, Y.; Kim, H. J.; Choi, S. I.; Lee, K. Etching to unveil active sites of nanocatalysts for electrocatalysis. Mater. Chem. Front. 2021, 5, 3962–3985.

[24]

Yoon, D.; Bang, S.; Jin, H.; Baik, H.; Lee, K. One step synthesis of hierarchical dendritic Pt nanostructures with a concave Pt octahedron building unit via simultaneous vertex growth and facet etching. CrystEngComm 2015, 17, 6848–6851.

[25]

Lee, K.; Kim, M.; Kim, H. Catalyticnanoparticles being facet-controlled. J. Mater. Chem. 2010, 20, 3791–3798.

[26]

He, B. W.; Wang, Y. T.; Zhang, M. M.; Xu, Y.; Zheng, Y. L.; Liu, X.; Wang, H.; Chen, H. Y. Serrated Au nanoplates via the sharpening etching mode. Chem. Mater. 2022, 34, 8213–8218.

[27]

Jiang, T.; Chen, G.; Tian, X. L.; Tang, S. W.; Zhou, J.; Feng, Y. H.; Chen, H. Y. Construction of long narrow gaps in Ag nanoplates. J. Am. Chem. Soc. 2018, 140, 15560–15563.

[28]

Zhai, Y. M.; Zhang, F.; Zhang, B.; Gao, X. H. Engineering single nanopores on gold nanoplates by tuning crystal screw dislocation. Adv. Mater. 2017, 29, 1703102.

[29]

Wang, C. S.; Kan, C. X.; Zhu, J. J.; Zeng, X. L.; Wang, X. F.; Li, H. C.; Shi, D. N. Synthesis of high-yield gold nanoplates: Fast growth assistant with binary surfactants. J. Nanomater. 2010, 2010, 969030.

[30]

Zhai, Y. M.; DuChene, J. S.; Wang, Y. C.; Qiu, J. J.; Johnston-Peck, A. C.; You, B.; Guo, W. X.; DiCiaccio, B.; Qian, K.; Zhao, E. W. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895.

[31]

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

[32]

Rodriguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257–14261.

[33]

Liu, W. Q.; Hou, S.; Yan, J.; Zhang, H.; Ji, Y. L.; Wu, X. C. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity. Nanoscale 2016, 8, 780–784.

[34]

Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzán, L. M. Surfactant layers on gold nanorods. Acc. Chem. Res. 2023, 56, 1204–1212.

[35]

Huang, Y. J.; Ferhan, A. R.; Gao, Y.; Dandapat, A.; Kim, D. H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 2014, 6, 6496–6500.

[36]

Kan, C. X.; Zhu, X. G.; Wang, G. H. Single-crystalline gold microplates: Synthesis, characterization, and thermal stability. J. Phys. Chem. B 2006, 110, 4651–4656.

[37]

Mendoza-Ramirez, M. C.; Silva-Pereyra, H. G.; Avalos-Borja, M. Hexagonal phase into Au plate-like particles: A precession electron diffraction study. Mater. Charact. 2020, 164, 110313.

[38]
Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer: New York, 2009.
[39]

Nishikawa, S.; Kikuchi, S. Diffraction of cathode rays by calcite. Nature 1928, 122, 726.

[40]

Plesa, C.; Verschueren, D.; Pud, S.; van der Torre, J.; Ruitenberg, J. W.; Witteveen, M. J.; Jonsson, M. P.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 2016, 11, 1093–1097.

Nano Research
Pages 8610-8617
Cite this article:
Hu H, Wang Y, Wang Q, et al. Boring holes in Au nanoplates by active surface etching. Nano Research, 2024, 17(9): 8610-8617. https://doi.org/10.1007/s12274-024-6830-z
Topics:
Metrics & Citations  
Article History
Copyright
Return