AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biodegradable, strong, and clear wood package for plastic alternative

Jianfu Tang1Xueqin Fan1Haozhou Huang2,3Xiaofei Dong1Xueqi Li1Peiru Wang1Ran Yin1Yanjun Xie1Jian Li1Gang Tan2,3Zhenqian Pang2,3( )Wentao Gan1,4( )
Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
Department of Architecture, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
Show Author Information

Graphical Abstract

A simple and scalable top-down strategy is demonstrated to fabricate biodegradable, strong, and clear wood film. The wood film exhibits good mechanical strength, barrier properties against both water vapor and oxygen, and good processability, holding great potential as a plastic alternative in food packages.

Abstract

Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development. However, the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages. Herein, we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol (PVA) infiltration. The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying, resulting in high light transmittance with low haze, good mechanical performance, and high barrier performance for oxygen and water vapor. Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA, which effectively enhances the Young’s modulus and strength of the wood packaging film. These findings contribute to the development of biodegradable and strong packaging materials, as well as other food-related applications, using sustainable wood.

Electronic Supplementary Material

Video
6831_ESM2.mov
6831_ESM3.mov
6831_ESM4.mov
Download File(s)
6831_ESM1.pdf (1.8 MB)

References

[1]

Sangroniz, A.; Zhu, J. B.; Tang, X. Y.; Etxeberria, A.; Chen, E. Y. X.; Sardon, H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 2019, 10, 3559.

[2]

Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.

[3]

Záleská, M.; Pavlíková, M.; Pokorný, J.; Jankovský, O.; Pavlík, Z.; Černý, R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018, 180, 1–11.

[4]
National overview: Facts and fig. S about materials, waste and recycling (EPA, 2018) [Online]. https://www.epa.gov/facts-and-Fig.s-about-materials-waste-and-recycling/national-overview-facts-and-Fig.s-materials.
[5]

Rochman, C. M.; Browne, M. A.; Halpern, B. S.; Hentschel, B. T.; Hoh, E.; Karapanagioti, H. K.; Rios-Mendoza, L. M.; Takada, H.; Teh, S.; Thompson, R. C. Classify plastic waste as hazardous. Nature 2013, 494, 169–171.

[6]

Sid, S.; Mor, R. S.; Kishore, A.; Sharanagat, V. S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 115, 87–104.

[7]

Norton, M. Tackling the challenge of packaging plastic in the environment. Chem. —Eur. J. 2020, 26, 7737–7739.

[8]

Zhu, K. K.; Tu, H.; Yang, P. C.; Qiu, C. B.; Zhang, D. H.; Lu, A.; Luo, L. B.; Chen, F.; Liu, X. Y.; Chen, L. Y. et al. Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability. Chem. Mater. 2019, 31, 2078–2087.

[9]

Mlalila, N.; Hilonga, A.; Swai, H.; Devlieghere, F.; Ragaert, P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci. Technol. 2018, 74, 1–11.

[10]

Almeida, A. P. C.; Canejo, J. P.; Fernandes, S. N.; Echeverria, C.; Almeida, P. L.; Godinho, M. H. Cellulose-based biomimetics and their applications. Adv. Mater. 2018, 30, 1703655.

[11]

Moustafa, H.; El Kissi, N.; Abou-Kandil, A. I.; Abdel-Aziz, M. S.; Dufresne, A. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl. Mater. Interfaces 2017, 9, 20132–20141.

[12]

Yu, H. Y.; Zhang, H.; Song, M. L.; Zhou, Y.; Yao, J. M.; Ni, Q. Q. From cellulose nanospheres, nanorods to nanofibers: Various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 2017, 9, 43920–43938.

[13]

Fang, Z. Q.; Zhu, H. L.; Yuan, Y. B.; Ha, D.; Zhu, S. Z.; Preston, C.; Chen, Q. X.; Li, Y. Y.; Han, X. G.; Lee, S. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773.

[14]

Fu, F. Y.; Li, L. Y.; Liu, L. J.; Cai, J.; Zhang, Y. P.; Zhou, J. P.; Zhang, L. N. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater Interfaces 2015, 7, 2597–2606.

[15]

Qiu, C. B.; Zhu, K. K.; Yang, W. X.; Wang, Y.; Zhang, L. N.; Chen, F.; Fu, Q. Super strong all-cellulose composite filaments by combination of inducing nanofiber formation and adding nanofibrillated cellulose. Biomacromolecules 2018, 19, 4386–4395.

[16]

Yao, K.; Meng, Q. J.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 2017, 29, 1701323.

[17]

Berglund, L. A.; Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 2018, 30, 1704285.

[18]

Jiang, F.; Li, T.; Li, Y. J.; Zhang, Y.; Gong, A.; Dai, J. Q.; Hitz, E.; Luo, W.; Hu, L. W. Wood-Based Nanotechnologies toward Sustainability. Adv. Mater. 2018, 30, 1703453.

[19]

Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

[20]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[21]

Fu, Q. L.; Ansari, F.; Zhou, Q.; Berglund, L. A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 2018, 12, 2222–2230.

[22]

Dong, X. F.; Gan, W. T.; Shang, Y.; Tang, J. F.; Wang, Y. X.; Cao, Z. F.; Xie, Y. J.; Liu, J. Q.; Bai, L.; Li, J. et al. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 2022, 5, 628–635.

[23]

Wang, F.; Cheong, J. Y.; Lee, J.; Ahn, J.; Duan, G. G.; Chen, H. L.; Zhang, Q.; Kim, I. D.; Jiang, S. H. Pyrolysis of enzymolys, is-treated wood: Hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 2021, 31, 2101077.

[24]

Qin, B.; Yu, Z. L.; Huang, J.; Meng, Y. F.; Chen, R.; Chen, Z.; Yu, S. H. A petrochemical-free route to superelastic hierarchical cellulose aerogel. Angew. Chem., Int. Ed. 2023, 62, e202214809.

[25]

Yu, Z. L.; Yang, N.; Zhou, L. C.; Ma, Z. Y.; Zhu, Y. B.; Lu, Y. Y.; Qin, B.; Xing, W. Y.; Ma, T.; Li, S. C. et al. Bioinspired polymeric woods. Sci. Adv. 2018, 4, eaat7223.

[26]

Gan, W. T.; Chen, C. J.; Kim, H. T.; Lin, Z. W.; Dai, J. Q.; Dong, Z. H.; Zhou, Z.; Ping, W. W.; He, S. M.; Xiao, S. L. et al. Single-digit-micrometer thickness wood speaker. Nat. Commun. 2019, 10, 5084.

[27]

Mattsson, T. R.; Lane, J. M. D.; Cochrane, K. R.; Desjarlais, M. P.; Thompson, A. P.; Pierce, F.; Grest, G. S. First-principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 2010, 81, 054103.

[28]

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

[29]

Zhu, H. L.; Zhu, S. Z.; Jia, Z.; Parvinian, S.; Li, Y. Y.; Vaaland, O.; Hu, L. B.; Li, T. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. USA 2015, 112, 8971–8976.

[30]

Kumar, A.; Jyske, T.; Petrič, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: A review. Adv. Sustainable Syst. 2021, 5, 2000251.

[31]

Bragd, P. L.; Van Bekkum, H.; Besemer, A. C. TEMPO-mediated oxidation of polysaccharides: Survey of methods and applications. Top. Catal. 2004, 27, 49–66.

[32]

Chang, P. S.; Robyt, J. F. Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J. Carbohydr. Chem. 1996, 15, 819–830.

[33]

Saito, T.; Shibata, I.; Isogai, A.; Suguri, N.; Sumikawa, N. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 2005, 61, 414–419.

[34]

Brinkmann, M.; Hayden, J.; Letz, M.; Reichel, S.; Click, C.; Mannstadt, W.; Schreder, B.; Wolff, S.; Ritter, S.; Davis, M. J. et al. Optical materials and their properties. In Springer Handbook of Lasers and Optics. Träger, F., Ed.; Springer: Berlin, Heidelberg, 2012; pp 253–399.

[35]
Crompton, T. R. Physical Testing of Plastics; Smithers Rapra Technology Ltd.: Shropshire, 2012; pp 1–148.
[36]
Sharma, C. P. Engineering Materials: Properties and Applications of Metals and Alloys; Prentice Hall India Learning Private Limited: Delhi, 2003.
[37]

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

[38]

Springer, H.; Baron, C.; Szczepaniak, A.; Uhlenwinkel, V.; Raabe, D. Stiff, light, strong and ductile: Nano-structured high modulus steel. Sci. Rep. 2017, 7, 2757.

[39]

Montanari, C.; Ogawa, Y.; Olsén, P.; Berglund, L. A. High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. (Weinh.) 2021, 8, 2100559.

[40]

Subba Rao, A. N.; Nagarajappa, G. B.; Nair, S.; Chathoth, A. M.; Pandey, K. K. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 2019, 182, 107719.

[41]

Li, Y. Y.; Fu, Q. L.; Yu, S.; Yan, M.; Berglund, L. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules 2016, 17, 1358–1364.

[42]

Zhu, M. W.; Song, J. W.; Li, T.; Gong, A.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Henderson, D.; Hu, L. B. Highly anisotropic, highly transparent wood composites. Adv. Mater. 2016, 28, 5181–5187.

[43]

Zhu, M. W.; Li, T.; Davis, C. S.; Yao, Y. G.; Dai, J. Q.; Wang, Y. B.; AlQatari, F.; Gilman, J. W.; Hu, L. B. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339.

[44]

Mi, R. Y.; Chen, C. J.; Keplinger, T.; Pei, Y.; He, S. M.; Liu, D. P.; Li, J. G.; Dai, J. Q.; Hitz, E.; Yang, B. et al. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 2020, 11, 3836.

[45]

Li, T.; Zhu, M. W.; Yang, Z.; Song, J. W.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Pastel, G.; Yang, B.; Hu, L. B. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 2016, 6, 1601122.

[46]

Silva, F. A. G. S.; Dourado, F.; Gama, M.; Poças, F. Nanocellulose bio-based composites for food packaging. Nanomaterials (Basel) 2020, 10, 2041.

[47]

Mustapha, R.; Zoughaib, A.; Ghaddar, N.; Ghali, K. Modified upright cup method for testing water vapor permeability in porous membranes. Energy 2020, 195, 117057.

[48]

Norrrahim, M. N. F.; Ariffin, H.; Hassan, M. A.; Ibrahim, N. A.; Nishida, H. Performance evaluation and chemical recyclability of a polyethylene/poly(3-hydroxybutyrate- co-3-hydroxyvalerate) blend for sustainable packaging. RSC Adv. 2013, 3, 24378–24388.

[49]
Robertson, G. L. Food Packaging: Principles and Practice; 2nd ed. CRC Press: Boca Raton, 2005.
[50]

Pramanik, N. K.; Katamgari, I.; Dey, A.; Bhardwaj, Y. K.; Alam, T.; Chattopadhyay, S. K.; Saha, N. C. Electron beam irradiation on monolayer plastic packaging films: Studies on Physico-mechanical and thermal properties. Packag. Technol. Sci. 2021, 34, 475–483.

[51]

Sonar, C. R.; Al-Ghamdi, S.; Marti, F.; Tang, J. M.; Sablani, S. S. Performance evaluation of biobased/biodegradable films for in-package thermal pasteurization. Innovat. Food Sci. Emerg. Technol. 2020, 66, 102485.

[52]

Wang, J. W.; Gardner, D. J.; Stark, N. M.; Bousfield, D. W.; Tajvidi, M.; Cai, Z. Y. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustainable Chem. Eng. 2018, 6, 49–70.

[53]

Chiellini, E.; Corti, A.; D'Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014.

[54]

Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.

[55]

Wei, G.; Zhang, J. M.; Usuelli, M.; Zhang, X. F.; Liu, B.; Mezzenga, R. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog. Mater. Sci. 2022, 125, 100915.

[56]

Li, Y. Y.; Yu, S.; Veinot, J. G. C.; Linnros, J.; Berglund, L.; Sychugov, I. Luminescent transparent wood. Adv. Opt. Mater. 2017, 5, 1600834.

[57]

Zhu, M. W.; Jia, C.; Wang, Y. L.; Fang, Z. Q.; Dai, J. Q.; Xu, L. S.; Huang, D. F.; Wu, J. Y.; Li, Y. F.; Song, J. W. et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interfaces 2018, 10, 28566–28571.

[58]

Li, Y. Y.; Fu, Q. L.; Rojas, R.; Yan, M.; Lawoko, M.; Berglund, L. Lignin-retaining transparent wood. ChemSusChem 2017, 10, 3445–3451.

Nano Research
Pages 8531-8541
Cite this article:
Tang J, Fan X, Huang H, et al. Biodegradable, strong, and clear wood package for plastic alternative. Nano Research, 2024, 17(9): 8531-8541. https://doi.org/10.1007/s12274-024-6831-y
Topics:

824

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 March 2024
Revised: 31 May 2024
Accepted: 17 June 2024
Published: 24 July 2024
© Tsinghua University Press 2024
Return