Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development. However, the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages. Herein, we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol (PVA) infiltration. The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying, resulting in high light transmittance with low haze, good mechanical performance, and high barrier performance for oxygen and water vapor. Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA, which effectively enhances the Young’s modulus and strength of the wood packaging film. These findings contribute to the development of biodegradable and strong packaging materials, as well as other food-related applications, using sustainable wood.
Sangroniz, A.; Zhu, J. B.; Tang, X. Y.; Etxeberria, A.; Chen, E. Y. X.; Sardon, H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 2019, 10, 3559.
Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.
Záleská, M.; Pavlíková, M.; Pokorný, J.; Jankovský, O.; Pavlík, Z.; Černý, R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018, 180, 1–11.
Rochman, C. M.; Browne, M. A.; Halpern, B. S.; Hentschel, B. T.; Hoh, E.; Karapanagioti, H. K.; Rios-Mendoza, L. M.; Takada, H.; Teh, S.; Thompson, R. C. Classify plastic waste as hazardous. Nature 2013, 494, 169–171.
Sid, S.; Mor, R. S.; Kishore, A.; Sharanagat, V. S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 115, 87–104.
Norton, M. Tackling the challenge of packaging plastic in the environment. Chem. —Eur. J. 2020, 26, 7737–7739.
Zhu, K. K.; Tu, H.; Yang, P. C.; Qiu, C. B.; Zhang, D. H.; Lu, A.; Luo, L. B.; Chen, F.; Liu, X. Y.; Chen, L. Y. et al. Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability. Chem. Mater. 2019, 31, 2078–2087.
Mlalila, N.; Hilonga, A.; Swai, H.; Devlieghere, F.; Ragaert, P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci. Technol. 2018, 74, 1–11.
Almeida, A. P. C.; Canejo, J. P.; Fernandes, S. N.; Echeverria, C.; Almeida, P. L.; Godinho, M. H. Cellulose-based biomimetics and their applications. Adv. Mater. 2018, 30, 1703655.
Moustafa, H.; El Kissi, N.; Abou-Kandil, A. I.; Abdel-Aziz, M. S.; Dufresne, A. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl. Mater. Interfaces 2017, 9, 20132–20141.
Yu, H. Y.; Zhang, H.; Song, M. L.; Zhou, Y.; Yao, J. M.; Ni, Q. Q. From cellulose nanospheres, nanorods to nanofibers: Various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 2017, 9, 43920–43938.
Fang, Z. Q.; Zhu, H. L.; Yuan, Y. B.; Ha, D.; Zhu, S. Z.; Preston, C.; Chen, Q. X.; Li, Y. Y.; Han, X. G.; Lee, S. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773.
Fu, F. Y.; Li, L. Y.; Liu, L. J.; Cai, J.; Zhang, Y. P.; Zhou, J. P.; Zhang, L. N. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater Interfaces 2015, 7, 2597–2606.
Qiu, C. B.; Zhu, K. K.; Yang, W. X.; Wang, Y.; Zhang, L. N.; Chen, F.; Fu, Q. Super strong all-cellulose composite filaments by combination of inducing nanofiber formation and adding nanofibrillated cellulose. Biomacromolecules 2018, 19, 4386–4395.
Yao, K.; Meng, Q. J.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 2017, 29, 1701323.
Berglund, L. A.; Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 2018, 30, 1704285.
Jiang, F.; Li, T.; Li, Y. J.; Zhang, Y.; Gong, A.; Dai, J. Q.; Hitz, E.; Luo, W.; Hu, L. W. Wood-Based Nanotechnologies toward Sustainability. Adv. Mater. 2018, 30, 1703453.
Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.
Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.
Fu, Q. L.; Ansari, F.; Zhou, Q.; Berglund, L. A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 2018, 12, 2222–2230.
Dong, X. F.; Gan, W. T.; Shang, Y.; Tang, J. F.; Wang, Y. X.; Cao, Z. F.; Xie, Y. J.; Liu, J. Q.; Bai, L.; Li, J. et al. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 2022, 5, 628–635.
Wang, F.; Cheong, J. Y.; Lee, J.; Ahn, J.; Duan, G. G.; Chen, H. L.; Zhang, Q.; Kim, I. D.; Jiang, S. H. Pyrolysis of enzymolys, is-treated wood: Hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 2021, 31, 2101077.
Qin, B.; Yu, Z. L.; Huang, J.; Meng, Y. F.; Chen, R.; Chen, Z.; Yu, S. H. A petrochemical-free route to superelastic hierarchical cellulose aerogel. Angew. Chem., Int. Ed. 2023, 62, e202214809.
Yu, Z. L.; Yang, N.; Zhou, L. C.; Ma, Z. Y.; Zhu, Y. B.; Lu, Y. Y.; Qin, B.; Xing, W. Y.; Ma, T.; Li, S. C. et al. Bioinspired polymeric woods. Sci. Adv. 2018, 4, eaat7223.
Gan, W. T.; Chen, C. J.; Kim, H. T.; Lin, Z. W.; Dai, J. Q.; Dong, Z. H.; Zhou, Z.; Ping, W. W.; He, S. M.; Xiao, S. L. et al. Single-digit-micrometer thickness wood speaker. Nat. Commun. 2019, 10, 5084.
Mattsson, T. R.; Lane, J. M. D.; Cochrane, K. R.; Desjarlais, M. P.; Thompson, A. P.; Pierce, F.; Grest, G. S. First-principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 2010, 81, 054103.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
Zhu, H. L.; Zhu, S. Z.; Jia, Z.; Parvinian, S.; Li, Y. Y.; Vaaland, O.; Hu, L. B.; Li, T. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. USA 2015, 112, 8971–8976.
Kumar, A.; Jyske, T.; Petrič, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: A review. Adv. Sustainable Syst. 2021, 5, 2000251.
Bragd, P. L.; Van Bekkum, H.; Besemer, A. C. TEMPO-mediated oxidation of polysaccharides: Survey of methods and applications. Top. Catal. 2004, 27, 49–66.
Chang, P. S.; Robyt, J. F. Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J. Carbohydr. Chem. 1996, 15, 819–830.
Saito, T.; Shibata, I.; Isogai, A.; Suguri, N.; Sumikawa, N. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 2005, 61, 414–419.
Brinkmann, M.; Hayden, J.; Letz, M.; Reichel, S.; Click, C.; Mannstadt, W.; Schreder, B.; Wolff, S.; Ritter, S.; Davis, M. J. et al. Optical materials and their properties. In Springer Handbook of Lasers and Optics. Träger, F., Ed.; Springer: Berlin, Heidelberg, 2012; pp 253–399.
Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.
Springer, H.; Baron, C.; Szczepaniak, A.; Uhlenwinkel, V.; Raabe, D. Stiff, light, strong and ductile: Nano-structured high modulus steel. Sci. Rep. 2017, 7, 2757.
Montanari, C.; Ogawa, Y.; Olsén, P.; Berglund, L. A. High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. (Weinh.) 2021, 8, 2100559.
Subba Rao, A. N.; Nagarajappa, G. B.; Nair, S.; Chathoth, A. M.; Pandey, K. K. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 2019, 182, 107719.
Li, Y. Y.; Fu, Q. L.; Yu, S.; Yan, M.; Berglund, L. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules 2016, 17, 1358–1364.
Zhu, M. W.; Song, J. W.; Li, T.; Gong, A.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Henderson, D.; Hu, L. B. Highly anisotropic, highly transparent wood composites. Adv. Mater. 2016, 28, 5181–5187.
Zhu, M. W.; Li, T.; Davis, C. S.; Yao, Y. G.; Dai, J. Q.; Wang, Y. B.; AlQatari, F.; Gilman, J. W.; Hu, L. B. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339.
Mi, R. Y.; Chen, C. J.; Keplinger, T.; Pei, Y.; He, S. M.; Liu, D. P.; Li, J. G.; Dai, J. Q.; Hitz, E.; Yang, B. et al. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 2020, 11, 3836.
Li, T.; Zhu, M. W.; Yang, Z.; Song, J. W.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Pastel, G.; Yang, B.; Hu, L. B. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 2016, 6, 1601122.
Silva, F. A. G. S.; Dourado, F.; Gama, M.; Poças, F. Nanocellulose bio-based composites for food packaging. Nanomaterials (Basel) 2020, 10, 2041.
Mustapha, R.; Zoughaib, A.; Ghaddar, N.; Ghali, K. Modified upright cup method for testing water vapor permeability in porous membranes. Energy 2020, 195, 117057.
Norrrahim, M. N. F.; Ariffin, H.; Hassan, M. A.; Ibrahim, N. A.; Nishida, H. Performance evaluation and chemical recyclability of a polyethylene/poly(3-hydroxybutyrate- co-3-hydroxyvalerate) blend for sustainable packaging. RSC Adv. 2013, 3, 24378–24388.
Pramanik, N. K.; Katamgari, I.; Dey, A.; Bhardwaj, Y. K.; Alam, T.; Chattopadhyay, S. K.; Saha, N. C. Electron beam irradiation on monolayer plastic packaging films: Studies on Physico-mechanical and thermal properties. Packag. Technol. Sci. 2021, 34, 475–483.
Sonar, C. R.; Al-Ghamdi, S.; Marti, F.; Tang, J. M.; Sablani, S. S. Performance evaluation of biobased/biodegradable films for in-package thermal pasteurization. Innovat. Food Sci. Emerg. Technol. 2020, 66, 102485.
Wang, J. W.; Gardner, D. J.; Stark, N. M.; Bousfield, D. W.; Tajvidi, M.; Cai, Z. Y. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustainable Chem. Eng. 2018, 6, 49–70.
Chiellini, E.; Corti, A.; D'Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014.
Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.
Wei, G.; Zhang, J. M.; Usuelli, M.; Zhang, X. F.; Liu, B.; Mezzenga, R. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog. Mater. Sci. 2022, 125, 100915.
Li, Y. Y.; Yu, S.; Veinot, J. G. C.; Linnros, J.; Berglund, L.; Sychugov, I. Luminescent transparent wood. Adv. Opt. Mater. 2017, 5, 1600834.
Zhu, M. W.; Jia, C.; Wang, Y. L.; Fang, Z. Q.; Dai, J. Q.; Xu, L. S.; Huang, D. F.; Wu, J. Y.; Li, Y. F.; Song, J. W. et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interfaces 2018, 10, 28566–28571.
Li, Y. Y.; Fu, Q. L.; Rojas, R.; Yan, M.; Lawoko, M.; Berglund, L. Lignin-retaining transparent wood. ChemSusChem 2017, 10, 3445–3451.