Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Due to the high structural flexibility and controllable thermal expansion, cubic double ReO3-type negative thermal expansion (NTE) fluorides provide a solution for solving the prominent phenomenon of thermal expansion mismatch between materials. However, the expensive raw materials and complex synthesis steps limit its practical application. In this work, we have designed a more advantageous method for the synthesis of NTE material CaZrF6, and it is expected to be generalized to the synthesis of other double ReO3-fluorides. Intriguingly, a new orthorhombic phase CaZrF6 has been synthesized via this method in a lower temperature. Unlike the strong isotropic NTE of the cubic phase CaZrF6, the orthorhombic phase shows the strong anisotropic positive thermal expansion (PTE). The combined analysis of temperature-dependent X-ray diffraction (XRD), Raman spectra, and first-principles calculations shows that the low frequency phonon vibration mode with negative Grüneisen parameter in cubic CaZrF6 are strongly correlated with the transverse thermal vibration of F atoms and dominates the NTE of the material.
Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.
Lohaus, S. H.; Heine, M.; Guzman, P.; Bernal-Choban, C. M.; Saunders, C. N.; Shen, G.; Hellman, O.; Broido, D.; Fultz, B. A thermodynamic explanation of the Invar effect. Nat. Phys. 2023, 19, 1642–1648.
Li, L. F.; Tong, P.; Zou, Y. M.; Tong, W.; Jiang, W. B.; Jiang, Y.; Zhang, X. K.; Lin, J. C.; Wang, M.; Yang, C. et al. Good comprehensive performance of Laves phase Hf1− x Ta x Fe2 as negative thermal expansion materials. Acta Mater. 2018, 161, 258–265.
Zhou, H.; Liu, Y.; Huang, R.; Chen, B.; Xia, M.; Yu, Z.; Chen, H.; Qiao, K.; Cong, J.; Taskaev, S. V. et al. Tunable negative thermal expansion in La(Fe,Si)13/resin composites with high mechanical property and long-term cycle stability. Microstructures 2022, 2, 2022018.
Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.
Long, Y. W.; Hayashi, N.; Saito, T.; Azuma, M.; Muranaka, S.; Shimakawa, Y. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature 2009, 458, 60–63.
Pachoud, E.; Cumby, J.; Lithgow, C. T.; Attfield, J. P. Charge order and negative thermal expansion in V2OPO4. J. Am. Chem. Soc. 2018, 140, 636–641.
Takenaka, K.; Asai, D.; Kaizu, R.; Mizuno, Y.; Yokoyama, Y.; Okamoto, Y.; Katayama, N.; Suzuki, H. S.; Imanaka, Y. Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer. Sci. Rep. 2019, 9, 122.
Chen, J.; Gao, Q. L.; Sanson, A.; Jiang, X. X.; Huang, Q. Z.; Carnera, A.; Rodriguez, C. G.; Olivi, L.; Wang, L.; Hu, L. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 2017, 8, 14441.
Pan, Z.; Chen, J.; Jiang, X. X.; Lin, Z. S.; Zhang, H. B.; Ren, Y.; Azuma, M.; Xing, X. R. Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1− x)PbTiO3- xBi (Zn1/2V1/2)O3. Inorg. Chem. Front. 2019, 6, 1990–1995.
Nishikubo, T.; Ogata, T.; Venkataraman, L. K.; Isaia, D.; Pan, Z.; Sakai, Y.; Hu, L.; Kawaguchi, S.; Machida, A.; Watanuki, T. et al. Polarization-and strain-mediated control of negative thermal expansion and ferroelasticity in BiInO3–BiZn1/2Ti1/2O3. Chem. Mater. 2021, 33, 1498–1505.
Qin, F. Y.; Hu, L.; Zhu, Y. C.; Sakai, Y.; Kawaguchi, S.; Machida, A.; Watanuki, T.; Fang, Y. W.; Sun, J.; Ding, X. D. et al. Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd, Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons. Acta Mater. 2024, 264, 119544.
Zhen, X.; Sanson, A.; Sun, Q.; Liang, E.; Gao, Q. Role of alkali ions in the near-zero thermal expansion of NaSICON-type A Zr2(PO4)3 (A = Na, K, Rb, Cs) and Zr2(PO4)3 compounds. Phys. Rev. B 2023, 108, 144102.
Liang, E. J.; Sun, Q.; Yuan, H. L.; Wang, J. Q.; Zeng, G. J.; Gao, Q. L. Negative thermal expansion: Mechanisms and materials. Front. Phys. 2021, 16, 53302.
Lu, H. Q.; Sun, Y.; Shi, K. W.; Wu, L. L.; Niu, B.; Wang, C. Effects of Fe doping on structure, negative thermal expansion, and magnetic properties of antiperovskite Mn3GaN compounds. J. Am. Ceram. Soc. 2023, 106, 3792–3799.
Zhou, H. B.; Yu, Z. B.; Hu, F. X.; Wang, J. T.; Shen, F. R.; Hao, J. Z.; He, L. H.; Huang, Q. Z.; Gao, Y. H.; Wang, B. J. et al. Emergence of Invar effect with excellent mechanical property by electronic structure modulation in LaFe11.6− x Co x Si1.4 magnetocaloric materials. Acta Mater. 2023, 260, 119312.
Zhao, H. T.; Pan, Z.; Shen, X.; Zhao, J. F.; Lu, D. B.; Zhang, J.; Hu, Z. W.; Kuo, C. Y.; Chen, C. T.; Chan, T. S. et al. Antiferroelectricity-induced negative thermal expansion in double perovskite Pb2CoMoO6. Small 2024, 20, 2305219.
Gao, Q. L.; Jiao, Y. X.; Sun, Q.; Sprenger, J. A. P.; Finze, M.; Sanson, A.; Liang, E. J.; Xing, X. R.; Chen, J. Giant negative thermal expansion in ultralight NaB(CN)4. Angew. Chem., Int. Ed. 2024, 63, e202401302.
Liu, H. F.; Fan, X. X.; Wang, W.; Zeng, X. H.; Zhang, Z. P. Effects of (KMg)3+ co-doping and sintering temperature on the negative thermal expansion property of Sc2W3O12 ceramics. Ceram. Int. 2024, 50, 21203–21212.
Goodwin, A. L.; Calleja, M.; Conterio, M. J.; Dove, M. T.; Evans, J. S. O.; Keen, D. A.; Peters, L.; Tucker, M. G. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 2008, 319, 794–797.
Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.
Bocharov, D.; Krack, M.; Rafalskij, Y.; Kuzmin, A.; Purans, J. Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size. Comput. Mater. Sci. 2020, 171, 109198.
Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Guglieri Rodriguez, C.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X.; Xing, X. R. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.
van Roekeghem, A.; Carrete, J.; Mingo, N. Anomalous thermal conductivity and suppression of negative thermal expansion in ScF3. Phys. Rev. B 2016, 94, 020303.
Dove, M. T.; Wei, Z. S.; Phillips, A. E.; Keen, D. A.; Refson, K. Which phonons contribute most to negative thermal expansion in ScF3. APL Mater. 2023, 11, 041130.
Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.
Xu, J. L.; Hu, L.; Song, Y. Z.; Han, F.; Qiao, Y. Q.; Deng, J. X.; Chen, J.; Xing, X. R. Zero thermal expansion in cubic MgZrF6. J. Am. Ceram. Soc. 2017, 100, 5385–5388.
Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533.
Qiao, Y. Q.; Zhang, S.; Zhang, P. X.; Guo, J.; Sanson, A.; Zhen, X.; Zhao, K. Y.; Gao, Q. L.; Chen, J. Simple chemical synthesis and isotropic negative thermal expansion in MHfF6 (M = Ca, Mn, Fe, and Co). Nano Res. 2024, 17, 2195–2203.
Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.
Gao, Q. L.; Zhang, S.; Jiao, Y. X.; Qiao, Y. Q.; Sanson, A.; Sun, Q.; Shi, X. W.; Liang, E. J.; Chen, J. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Res. 2023, 16, 5964–5972.
Hester, B. R.; Wilkinson, A. P. Effects of composition on crystal structure, thermal expansion, and response to pressure in ReO3-type MNbF6 (M = Mn and Zn). J. Solid State Chem. 2019, 269, 428–433.
Hester, B. R.; Hancock, J. C.; Lapidus, S. H.; Wilkinson, A. P. Composition, response to pressure, and negative thermal expansion in MIIBIVF6 (M = Ca, Mg; B= Zr, Nb). Chem. Mater. 2017, 29, 823–831.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.
Sanson, A.; Giarola, M.; Mariotto, G.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.
Bodine, D. L.; Wilkinson, A. P. Low temperature tetragonal polymorph of CaZrF6. APL Mater. 2023, 11, 041125.
Sugiura, C. X-ray spectroscopic studies of CaF2, CaO and CaS. Jpn. J. Appl. Phys. 1992, 31, 2816–2821.
Sleigh, C.; Pijpers, A. P.; Jaspers, A.; Coussens, B.; Meier, R. J. On the determination of atomic charge via ESCA including application to organometallics. J. Electron Spectrosc. Relat. Phenom. 1996, 77, 41–57.
Emery, A. A.; Wolverton, C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 2017, 4, 170153.
Pryde, A. K. A.; Hammonds, K. D.; Dove, M. T.; Heine, V.; Gale, J. D.; Warren, M. C. Rigid unit modes and the negative thermal expansion in ZrW2O8. Phase Transitions 1997, 61, 141–153.
Gao, Q. L.; Wang, J. Q.; Sanson, A.; Sun, Q.; Liang, E. J.; Xing, X. R.; Chen, J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J. Am. Chem. Soc. 2020, 142, 6935–6939.
Hester, B. R.; Dos Santos, A. M.; Molaison, J. J.; Hancock, J. C.; Wilkinson, A. P. Synthesis of defect perovskites (He2− x □ x )(CaZr)F6 by inserting helium into the negative thermal expansion material CaZrF6. J. Am. Chem. Soc. 2017, 139, 13284–13287.