AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photo-controllable antifouling hydrogels embedded with AgNPs coated spiropyran functionalized mesoporous silica for long-term antibacterial activity

Wei Su1,2,§Fei Wang1,2,§Bing Chen2Ruoke Li2Jindian Liu1,2Junjie Xu2Jianhua Fan1,2Yueling Liu1,2 ( )
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China

§ Wei Su and Fei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

To prevent the rapid loss and aggregation of silver nanoparticles (AgNPs), a photo-controllable antibacterial system based on AgNPs and spiropyran covalently conjugated mesoporous silica nanoparticles (Ag@SP-MSN) was developed. The Ag@SP-MSN embedded hydrogels demonstrated outstanding long-term antibacterial activity owing to the efficient and reversible isomerization of SP-MSN under different light irradiation.

Abstract

Silver nanoparticles (AgNPs) are widely used in antimicrobial applications. However, its easy aggregation and rapid loss hinder the effective antifouling. To address this issue, a novel stimuli-responsive antibacterial nanocomposite (Ag@SP-MSN) was developed based on spiropyran covalently conjugated mesoporous silica nanoparticles (284.6 nm) and AgNPs (27.1 nm) via strong electrostatic attraction. Both transmission electron microscopy (TEM) and atomic force microscopy (AFM) images proved the successful modification of AgNPs onto SP-MSN. The light-induced maximum loading amount towards AgNPs was calculated to be 95.0 wt.% after ultraviolet irradiation, while the amount of AgNPs released from Ag@SP-MSN was 94.4 wt.% under visible light in the aid of ammonia (0.1%, v/v). Upon cycled light irradiation, Ag@SP-MSN could recover 84.5 wt.% of AgNPs even after four cycles. The proposed Ag@SP-MSN exhibited better antibacterial activity against both E. coli and S. aureus than Ag@MSN under visible light illumination, indicating the efficient photo-responsive isomerization of spiropyran. Furthermore, the Ag@SP-MSN embedded gel demonstrated outstanding antifouling ability even after 21 days when compared to AgNPs gel. The long-term photo-controllable antifouling property proved the excellent reversible absorption and release of Ag@SP-MSN towards AgNPs. This work provides new insights into the safe utilization of nanomaterials, offering promising advancements to meet clinical antibacterial requirements.

Electronic Supplementary Material

Download File(s)
6834_ESM.pdf (7.1 MB)

References

[1]

Vadakkan, K.; Rumjit, N. P.; Ngangbam, A. K.; Vijayanand, S.; Nedumpillil, N. K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coord. Chem. Rev. 2024, 499, 215528.

[2]

Gong, X. Y.; Jadhav, N. D.; Lonikar, V. V.; Kulkarni, A. N.; Zhang, H. K.; Sankapal, B. R.; Ren, J. N.; Xu, B. B.; Pathan, H. M.; Ma, Y. et al. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv. Colloid Interface Sci. 2024, 323, 103053.

[3]

Cai, L.; Huang, Y. Q.; Duan, Y. Y.; Liu, Q.; Xu, Q. L.; Jia, J.; Wang, J. M.; Tong, Q.; Luo, P. P.; Wen, Y. J. et al. Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contributed to the improved curative effect on infectious microbes. Nano Res. 2021, 14, 2735–2748.

[4]

Xie, M. M.; Gao, M.; Yun, Y.; Malmsten, M.; Rotello, V. M.; Zboril, R.; Akhavan, O.; Kraskouski, A.; Amalraj, J.; Cai, X. M. et al. Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles. Angew. Chem., Int. Ed. 2023, 62, e202217345.

[5]

Chai, S.; Xie, Y. T.; Yang, L. H. Antibacterial applications of elemental nanomaterials. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101043.

[6]

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

[7]

Guo, C. P.; Cheng, F.; Liang, G. L.; Zhang, S.; Jia, Q. J.; He, L. H.; Duan, S. X.; Fu, Y. K.; Zhang, Z. H.; Du, M. Copper-based polymer-metal-organic framework embedded with Ag nanoparticles: Long-acting and intelligent antibacterial activity and accelerated wound healing. Chem. Eng. J. 2022, 435, 134915.

[8]

Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354.

[9]

Cao, M. H.; Leng, M.; Pan, W. L.; Wang, Y. L.; Tan, S. Z.; Jiao, Y. P.; Yu, S. G.; Fan, S. Q.; Xu, T.; Liu, T. et al. 3D wearable piezoresistive sensor with waterproof and antibacterial activity for multimodal smart sensing. Nano Energy 2023, 112, 108492.

[10]

Xu, J. X.; Ramasamy, M.; Tang, T. R. S.; Wang, Y.; Zhao, W. N.; Tam, K. C. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications. J. Colloid Interface Sci. 2022, 623, 883–896.

[11]

Fesseha, Y. A.; Manayia, A. H.; Liu, P. C.; Su, T. H.; Huang, S. Y.; Chiu, C. W.; Cheng, C. C. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment. J. Colloid Interface Sci. 2024, 654, 967–978.

[12]

Ilhami, F. B.; Huang, S. Y.; Cheng, C. C. Multi-biofunctional silver-containing metallosupramolecular nanogels for efficient antibacterial treatment and selective anticancer therapy. Acta Biomater. 2022, 151, 576–587.

[13]

Hu, K. B.; Zhang, C. Q.; Li, G. B.; Liu, Y. C.; Wang, D.; Li, K.; Hu, G. P.; Yang, L. Y. M.; Wan, Y. H. Efficient self-cleaning and antibacterial ceramics with ultra-low doping and high exposure of silver. J. Hazard. Mater. 2024, 461, 132533.

[14]

Cai, L.; Zhu, X. Y.; Ruan, H. J.; Yang, J.; Wei, W.; Wu, Y.; Zhou, L. Z.; Jiang, H. J.; Ji, M. H.; Chen, J. Curcumin-stabilized silver nanoparticles encapsulated in biocompatible electrospun nanofibrous scaffold for sustained eradication of drug-resistant bacteria. J. Hazard. Mater. 2023, 452, 131290.

[15]

Brucks, M. D.; Arslanova, A.; Smith, C. B.; Richards, J. J. Electroless deposition of silver onto silica nanoparticles to produce lipophilic core-shell nanoparticles. J. Colloid Interface Sci. 2023, 646, 663–670.

[16]

Butler, J.; Handy, R. D.; Upton, M.; Besinis, A. Review of antimicrobial nanocoatings in medicine and dentistry: Mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics. ACS Nano 2023, 17, 7064–7092.

[17]

Li, J. W.; Feng, Y. J.; Chen, W. C.; Zhang, S. H.; Ma, J. W.; Chen, S. J.; Liu, S. P.; Cao, C. B.; Zhang, Y. K. Electroactive materials: Innovative antibacterial platforms for biomedical applications. Prog. Mater. Sci. 2023, 132, 101045.

[18]

Cao, H. L.; Qin, H.; Li, Y. S.; Jandt, K. D. The action-networks of nanosilver: Bridging the gap between material and biology. Adv. Healthc. Mater. 2021, 10, 2100619.

[19]

Wu, Z. R.; Chan, B.; Low, J.; Chu, J. J. H.; Hey, H. W. D.; Tay, A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact. Mater. 2022, 16, 249–270.

[20]

Xu, X. Y.; Fan, M. L.; Yu, Z. H.; Zhao, Y.; Zhang, H. B.; Wang, J.; Wu, M. Z.; Sun, F.; Xu, X. Y.; Ding, C. M. et al. A removable photothermal antibacterial "warm paste" target for cariogenic bacteria. Chem. Eng. J. 2022, 429, 132491.

[21]

Kışla, D.; Gökmen, G. G.; Evrendilek, G. A.; Akan, T.; Vlčko, T.; Kulawik, P.; Jambrak, A. R.; Ozogul, F. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci. Technol. 2023, 135, 144–172.

[22]

Azizi-Lalabadi, M.; Garavand, F.; Jafari, S. M. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv. Colloid Interface Sci. 2021, 293, 102440.

[23]

Liu, Y.; Wu, J. M.; Li, W. H.; Li, J. Q.; Han, H. Y.; Song, Z. Y. Responsive metal-organic framework nanocarrier delivery system: An effective solution against bacterial infection. Coord. Chem. Rev. 2023, 496, 215431.

[24]

Wu, Y. Z.; Liu, P.; Mehrjou, B.; Chu, P. K. Interdisciplinary-inspired smart antibacterial materials and their biomedical applications. Adv. Mater. 2024, 36, 2305940.

[25]

Wang, X. H.; Shan, M. Y.; Zhang, S. K.; Chen, X.; Liu, W. T.; Chen, J. Z.; Liu, X. Y. Stimuli-responsive antibacterial materials: Molecular structures, design principles, and biomedical applications. Adv. Sci. 2022, 9, 2104843.

[26]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[27]

Hu, H.; Zhang, Y. Y.; Ma, H.; Yang, Y. C.; Mei, S.; Li, J.; Xu, J. F.; Zhang, X. A supramolecular naphthalene diimide radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. Angew. Chem., Int. Ed. 2023, 62, e202308513.

[28]

Ma, J. P.; Li, T.; Luo, M.; Lei, B. Single-component self-healing antibacterial anti-inflammatory intracellular-antioxidative poly (itaconic acid-pluronic) hydrogel for rapid repair of MRSA-impaired wound. ACS Appl. Mater. Interfaces 2023, 15, 33413–33424.

[29]

Yi, M.; Nguyen, T. D.; Liu, H.; Liu, Y. F.; Xiong, S.; Wang, Y. A boronate ester driven rechargeable antibacterial membrane for fast molecular sieving. Adv. Funct. Mater. 2023, 33, 2213471.

[30]

Sun, X.; Wei, M. S.; Pang, X.; Lin, L.; Gao, Q.; Su, L. C.; Liu, T.; Yao, Y. L.; Song, J. B.; Wang, W. et al. Sonodynamic bacterial inactivation enhanced by an actuator-integrated mechanism. Adv. Funct. Mater. 2023, 33, 2214619.

[31]

Xu, S. X.; Du, C.; Zhang, M. M.; Wang, R. Y.; Feng, W.; Wang, C. W.; Liu, Q. S.; Zhao, W. Electroactive and antibacterial wound dressings based on Ti3C2T x MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes. Nano Res. 2023, 16, 9672–9687.

[32]

Zou, L. Y.; Hu, D. F.; Wang, F. J.; Jin, Q.; Ji, J. The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms. Nano Res. 2022, 15, 1636–1644.

[33]

Piksa, M.; Lian, C.; Samuel, I. C.; Pawlik, K. J.; Samuel, I. D. W.; Matczyszyn, K. The role of the light source in antimicrobial photodynamic therapy. Chem. Soc. Rev. 2023, 52, 1697–1722.

[34]

Kolarikova, M.; Hosikova, B.; Dilenko, H.; Barton-Tomankova, K.; Valkova, L.; Bajgar, R.; Malina, L.; Kolarova, H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med. Res. Rev. 2023, 43, 717–774.

[35]

Huang, Y.; Gao, Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

[36]

Fu, J. T.; Zhou, Y. X.; Liu, T.; Wang, W. H.; Zhao, Y. T.; Sun, Y.; Zhang, Y. M.; Qin, W. X.; Chen, Z. W.; Lu, C. et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res. 2023, 16, 2682–2694.

[37]

Sahoo, J.; Sahoo, S.; Subramaniam, Y.; Bhatt, P.; Rana, S.; De, M. Photo-controlled gating of selective bacterial membrane interaction and enhanced antibacterial activity for wound healing. Angew. Chem., Int. Ed. 2024, 63, e202314804.

[38]

Wegener, M.; Hansen, M. J.; Driessen, A. J. M.; Szymanski, W.; Feringa, B. L. Photocontrol of antibacterial activity: Shifting from UV to red light activation. J. Am. Chem. Soc. 2017, 139, 17979–17986.

[39]

Babii, O.; Afonin, S.; Berditsch, M.; Reiβer, S.; Mykhailiuk, P. K.; Kubyshkin, V. S.; Steinbrecher, T.; Ulrich, A. S.; Komarov, I. V. Controlling biological activity with light: Diarylethene-containing cyclic peptidomimetics. Angew. Chem., Int. Ed. 2014, 53, 3392–3395.

[40]

Velema, W. A.; van der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Optical control of antibacterial activity. Nat. Chem. 2013, 5, 924–928.

[41]

Zhu, J. D.; Guo, T.; Wang, Z.; Zhao, Y. J. Triggered azobenzene-based prodrugs and drug delivery systems. J. Controlled Release 2022, 345, 475–493.

[42]

Tian, X. Q.; Li, S. K.; Velmurugan, K.; Bai, Z. H.; Liu, Q.; Wang, K. Y.; Zuo, M. Z.; Hu, X. Y. A novel photoswitchable AIE-active supramolecular photosensitizer with synergistic enhancement of ROS-generation ability constructed by a two-step sequential FRET process. Mater. Chem. Front. 2023, 7, 2484–2492.

[43]

Li, W.; Liu, Z.; Chen, Z. W.; Kang, L. H.; Guan, Y. J.; Ren, J. S.; Qu, X. G. An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Res. 2017, 10, 3068–3076.

[44]

Kortekaas, L.; Browne, W. R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424.

[45]

Välimaa, A. L.; Raitanen, J. E.; Tienaho, J.; Sarjala, T.; Nakayama, E.; Korpinen, R.; Mäkinen, S.; Eklund, P.; Willför, S.; Jyske, T. Enhancement of norway spruce bark side-streams: Modification of bioactive and protective properties of stilbenoid-rich extracts by UVA-irradiation. Ind. Crops Prod. 2020, 145, 112150.

[46]

Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.

[47]

Keyvan Rad, J.; Balzade, Z.; Mahdavian, A. R. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. C: Photochem. Rev. 2022, 51, 100487.

[48]

Guan, X. Y.; He, M. Y.; Chang, J. M.; Wang, Z.; Chen, Z. L.; Fan, H. J. Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder. J. Environ. Chem. Eng. 2021, 9, 104655.

[49]

Zhao, Y. Q.; Li, Z.; Ma, J. T.; Jia, Q. Design of a spiropyran-based smart adsorbent with dual response: Focusing on highly efficient enrichment of phosphopeptides. ACS Appl. Mater. Interfaces 2021, 13, 55806–55814.

[50]

Zhou, L.; Chen, Z. W.; Dong, K.; Yin, M. L.; Ren, J. S.; Qu, X. G. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv. Mater. 2014, 26, 2424–2430.

[51]

Abdollahi, A.; Alinejad, Z.; Mahdavian, A. R. Facile and fast photosensing of polarity by stimuli-responsive materials based on spiropyran for reusable sensors: A physico-chemical study on the interactions. J. Mater. Chem. C 2017, 5, 6588–6600.

[52]

Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Czupryn, M.; Antos-Bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver nanoparticles for wound healing: The importance of size. Int. J. Nanomed. 2018, 13, 991–1007.

[53]

Kim, T. Y.; Cha, S. H.; Cho, S.; Park, Y. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Arch. Pharmacal Res. 2016, 39, 465–473.

[54]

Liu, L. L.; Ge, C.; Zhang, Y.; Ma, W. R.; Su, X.; Chen, L.; Li, S. B.; Wang, L.; Mu, X. J.; Xu, Y. Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomater. Sci. 2020, 8, 4852–4860.

[55]

Tian, S. M.; Hu, Y. N.; Chen, X. X.; Liu, C.; Xue, Y. S.; Han, B. Z. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: Characterization and anti- S. aureus activity. Int. J. Biol. Macromol. 2022, 195, 515–522.

[56]

Niska, K.; Knap, N.; Kędzia, A.; Jaskiewicz, M.; Kamysz, W.; Inkielewicz-Stepniak, I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: An in vitro study concerns about potential application in dental practice. Int. J. Med. Sci. 2016, 13, 772–782.

[57]

Oves, M.; Aslam, M.; Rauf, M. A.; Qayyum, S.; Qari, H. A.; Khan, M. S.; Alam, M. Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I. M. I. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C 2018, 89, 429–443.

[58]

Yu, Y. F.; Yu X. F.; Tian, D. L.; Yu, A. X.; Wan, Y. Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. Int. J. Biol. Macromol. 2021, 182, 1746–1758

[59]

He, Y. J.; Su, Z. G.; Xue, L. J.; Xu, H.; Zhang, C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J. Controlled Release 2016, 229, 80–92.

[60]

He, Y. J.; Shao, L. J.; Usman, I.; Hu, Y.; Pan, A. Q.; Liang, S. Q.; Xu, H. A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomater. Sci. 2020, 8, 3418–3429.

[61]

Tang, Y. H.; Zhang, D. D.; Lu, Y.; Liu, S. Q.; Zhang, J.; Pu, Y. P.; Wei, W. Fluorescence imaging of FEN1 activity in living cells based on controlled-release of fluorescence probe from mesoporous silica nanoparticles. Biosens. Bioelectron. 2022, 214, 114529.

[62]

Tao, C. L.; Zhu, Y. F.; Xu, Y.; Zhu, M.; Morita, H.; Hanagata, N. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs. Dalton Trans. 2014, 43, 5142–5150.

[63]

Liu, C. Q.; Zhang, Y.; Liu, M.; Chen, Z. W.; Lin, Y. H.; Li, W.; Cao, F. F.; Liu, Z.; Ren, J. S.; Qu, X. G. A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy. Biomaterials 2017, 139, 151–162.

[64]

Chen, Z. W.; Zhou, L.; Bing, W.; Zhang, Z. J.; Li, Z. H.; Ren, J. S.; Qu, X. G. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 2014, 136, 7498–7504.

[65]

Wu, S. X.; Fan, J.; Wang, W.; Yu, D. Smart screen-printed photochromic fabrics with fast color switching performance and high fatigue resistance for energy storage applications. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 632, 127760.

[66]

Tian, W. G.; Tian, J. T. Synergy of different fluorescent enhancement effects on spiropyran appended onto cellulose. Langmuir 2014, 30, 3223–3227.

[67]

Kim, T.; Braun, G. B.; She, Z. G.; Hussain, S.; Ruoslahti, E.; Sailor, M. J. Composite porous silicon-silver nanoparticles as theranostic antibacterial agents. ACS Appl. Mater. Interfaces 2016, 8, 30449–30457.

[68]

Feeney, M. J.; Thomas, S. W. Tuning the negative photochromism of water-soluble spiropyran polymers. Macromolecules 2018, 51, 8027–8037.

[69]

Tran, N. T.; Ha, D.; Pham, L. H.; Vo, T. V.; Nguyen, N. N.; Tran, C. K.; Nguyen, D. M.; Nguyen, T. T. T.; Van Tran, T. T.; Nguyen, P. L. M. et al. Ag/SiO2 nanoparticles stabilization with lignin derived from rice husk for antifungal and antibacterial activities. Int. J. Biol. Macromol. 2023, 230, 123124.

Nano Research
Pages 8337-8349
Cite this article:
Su W, Wang F, Chen B, et al. Photo-controllable antifouling hydrogels embedded with AgNPs coated spiropyran functionalized mesoporous silica for long-term antibacterial activity. Nano Research, 2024, 17(9): 8337-8349. https://doi.org/10.1007/s12274-024-6834-8
Topics:

625

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 April 2024
Revised: 10 June 2024
Accepted: 19 June 2024
Published: 26 July 2024
© Tsinghua University Press 2024
Return