AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanisms for electric field induced color change in coupled colloidal quantum dot molecules revealed by low temperatures single particle spectroscopy

Yossef E. Panfil1,Adar Levi1Somnath Koley1,††Einav Scharf1Yonatan Ossia1Uri Banin1( )
Institute of Chemistry and the center for nanoscience and nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Present address: Quantum Engineering Laboratory, the Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104-6314, USA
Present address: Institute of Physics, Bhubaneswar, Odisha-751005, India
Show Author Information

Graphical Abstract

Low-temperature single coupled quantum dots molecules (CQDM) spectroscopy under an electric field reveals several mechanisms that contribute to the spectral change.

Abstract

Colloidal quantum dots (QDs), the building blocks of modern displays and optoelectronic devices, have reached the highest level of size and shape control, and stability during the last 30 years. However, full utilization of their potential requires integration or assembly of more than one nanocrystal as in the case of coupled quantum dots molecules (CQDM), where two core–shell QDs are fused to form two emission centers in close proximity. These CQDMs were recently shown to switch color under an applied electric field at room temperature. Here we use cryogenic single particle spectroscopy of single CQDMs under an electric field to show that various mechanisms can contribute to the spectrum change under an applied electric field at cryogenic temperatures. The first mechanism is the control of the delocalized electron wave function when the electric field is applied along the dimer axis. The electric field bends the conduction band and forces the electron wave function to localize in one of the QDs yielding preferential emission of that particular center. In addition, we found that QDs and CQDMs could become sensitive to surface traps under an electric field. In the case of CQDMs, that can result in decreasing the intensity of one of the QDs while increasing the other QD’s intensity. Moreover, we show that there are surface charges which screen the applied electric field in some of the QDs. This as well can result in electric field-induced color-tuning of CQDMs. Understanding the underlying mechanisms responsible for spectral shifts under applied electric fields is critical for the development of color-tunable devices utilizing CQDMs, including efficient displays and single photon sources.

Electronic Supplementary Material

Download File(s)
6835_ESM.pdf (3.6 MB)

References

[1]

Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 1982, 86, 4470–4472.

[2]

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[3]

Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J. Chem. Phys. 1992, 96, 946–954.

[4]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[5]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[6]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[7]

Panfil, Y. E.; Oded, M.; Waiskopf, N.; Banin, U. Material challenges for colloidal quantum nanostructures in next generation displays. AsiaChem Mag. 2020, 1, 26–35.

[8]

Panfil, Y. E.; Oded, M.; Banin, U. Colloidal quantum nanostructures: Emerging materials for display applications. Angew. Chem., Int. Ed. 2018, 57, 4274–4295.

[9]

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

[10]

Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

[11]

Carbone, L.; Nobile, C.; De Giorgi, M.; Della Sala, F.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942–2950.

[12]

Talapin, D. V.; Koeppe, R.; Götzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2003, 3, 1677–1681.

[13]

Sitt, A.; Salant, A.; Menagen, G.; Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054–2060.

[14]

Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

[15]

Aharoni, A.; Mokari, T.; Popov, I.; Banin, U. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc. 2006, 128, 257–264.

[16]

Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.

[17]

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

[18]

Kramer, I. J.; Sargent, E. H. Colloidal quantum dot photovoltaics: A path forward. ACS Nano 2011, 5, 8506–8514.

[19]

Pawar, A. A.; Halivni, S.; Waiskopf, N.; Ben-Shahar, Y.; Soreni-Harari, M.; Bergbreiter, S.; Banin, U.; Magdassi, S. Rapid three-dimensional printing in water using semiconductor-metal hybrid nanoparticles as photoinitiators. Nano Lett. 2017, 17, 4497–4501.

[20]

Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

[21]

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

[22]

Erdem, T.; Demir, H. V. Colloidal nanocrystals for quality lighting and displays: Milestones and recent developments. Nanophotonics 2016, 5, 74–95.

[23]

Grim, J. Q.; Manna, L.; Moreels, I. A sustainable future for photonic colloidal nanocrystals. Chem. Soc. Rev. 2015, 44, 5897–5914.

[24]

Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

[25]

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, eaau7392.

[26]

Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021, 121, 3186–3233.

[27]

Panfil, Y. E.; Cui, J. B.; Koley, S.; Banin, U. Complete mapping of interacting charging states in single coupled colloidal quantum dot molecules. ACS Nano 2022, 16, 5566–5576.

[28]

Panfil, Y. E.; Shamalia, D.; Cui, J. B.; Koley, S.; Banin, U. Electronic coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers. J. Chem. Phys. 2019, 151, 224501.

[29]

Koley, S.; Cui, J. B.; Panfil, Y. E.; Banin, U. Coupled colloidal quantum dot molecules. Acc. Chem. Res. 2021, 54, 1178–1188.

[30]

Cui, J. B.; Panfil, Y. E.; Koley, S.; Shamalia, D.; Waiskopf, N.; Remennik, S.; Popov, I.; Oded, M.; Banin, U. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 2019, 10, 5401.

[31]

Ossia, Y.; Levi, A.; Panfil, Y. E.; Koley, S.; Scharf, E.; Chefetz, N.; Remennik, S.; Vakahi, A.; Banin, U. Electric-field-induced colour switching in colloidal quantum dot molecules at room temperature. Nat. Mater. 2023, 22, 1210–1217.

[32]

Empedocles, S. A.; Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 1997, 278, 2114–2117.

[33]

Rothenberg, E.; Kazes, M.; Shaviv, E.; Banin, U. Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett. 2005, 5, 1581–1586.

[34]

Müller, J.; Lupton, J. M.; Lagoudakis, P. G.; Schindler, F.; Koeppe, R.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 2005, 5, 2044–2049.

[35]

Bar-Elli, O.; Steinitz, D.; Yang, G. L.; Tenne, R.; Ludwig, A.; Kuo, Y.; Triller, A.; Weiss, S.; Oron, D. Rapid voltage sensing with single nanorods via the quantum confined stark effect. ACS Photonics 2018, 5, 2860–2867.

[36]

Park, K. W.; Deutsch, Z.; Li, J. J.; Oron, D.; Weiss, S. Single molecule quantum-confined stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 2012, 6, 10013–10023.

[37]

Kuo, Y.; Li, J.; Michalet, X.; Chizhik, A.; Meir, N.; Bar-Elli, O.; Chan, E.; Oron, D.; Enderlein, J.; Weiss, S. Characterizing the quantum-confined stark effect in semiconductor quantum dots and nanorods for single-molecule electrophysiology. ACS Photonics 2018, 5, 4788–4800.

[38]

Scott, R.; Achtstein, A. W.; Prudnikau, A. V.; Antanovich, A.; Siebbeles, L. D. A.; Artemyev, M.; Woggon, U. Time-resolved stark spectroscopy in CdSe nanoplatelets: Exciton binding energy, polarizability, and field-dependent radiative rates. Nano Lett. 2016, 16, 6576–6583.

[39]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe–CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[40]

Koley, S.; Cui, J. B.; Panfil, Y. E.; Ossia, Y.; Levi, A.; Scharf, E.; Verbitsky, L.; Banin, U. Photon correlations in colloidal quantum dot molecules controlled by the neck barrier. Matter 2022, 5, 3997–4014.

[41]

Spoor, F. C. M.; Kunneman, L. T.; Evers, W. H.; Renaud, N.; Grozema, F. C.; Houtepen, A. J.; Siebbeles, L. D. A. Hole cooling is much faster than electron cooling in pbse quantum dots. ACS Nano 2016, 10, 695–703.

[42]

Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.

[43]

Bleuse, J.; Carayon, S.; Reiss, P. Optical properties of core/multishell CdSe/Zn(S,Se) nanocrystals. Phys. E: Low-Dimens. Syst. Nanostruct. 2004, 21, 331–335.

[44]

Hadar, I.; Philbin, J. P.; Panfil, Y. E.; Neyshtadt, S.; Lieberman, I.; Eshet, H.; Lazar, S.; Rabani, E.; Banin, U. Semiconductor seeded nanorods with graded composition exhibiting high quantum-yield, high polarization, and minimal blinking. Nano Lett. 2017, 17, 2524–2531.

[45]

Lin, M. L.; Miscuglio, M.; Polovitsyn, A.; Leng, Y. C.; Martín-García, B.; Moreels, I.; Tan, P. H.; Krahne, R. Giant-shell CdSe/CdS nanocrystals: Exciton coupling to shell phonons investigated by resonant Raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 399–405.

[46]

Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S. et al. Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. J. Mater. Chem. C 2014, 2, 3439–3447.

[47]

Pal, B. N.; Ghosh, Y.; Brovelli, S.; Laocharoensuk, R.; Klimov, V. I.; Hollingsworth, J. A.; Htoon, H. “Giant” CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: Strong influence of shell thickness on light-emitting diode performance. Nano Lett. 2012, 12, 331–336.

Nano Research
Pages 10346-10354
Cite this article:
Panfil YE, Levi A, Koley S, et al. Mechanisms for electric field induced color change in coupled colloidal quantum dot molecules revealed by low temperatures single particle spectroscopy. Nano Research, 2024, 17(12): 10346-10354. https://doi.org/10.1007/s12274-024-6835-7
Topics:

525

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 May 2024
Revised: 20 June 2024
Accepted: 20 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return