AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Generating 1O2 and CoIV=O through efficient peroxymonosulfate activation by ZnCo2O4 nanosheets for pollutant control

Xiaoke Zhang1,§Yangyang Zhang1,§Jiaqi Tian1Yadan Guo3Zhongkui Zhou3Zhongyi Liu1,2( )Zaiwang Zhao5Bin Liu4Jun Li1( )
College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450001, China
School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, InnerMongolia University, Hohhot 010070, China

§ Xiaoke Zhang and Yangyang Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

A series of surface Co defect-rich spinel ZnCo2O4 porous nanosheets were successfully synthesized, and employed for peroxymonosulfate activation to generate ≡CoIV=O and 1O2 over a wide pH range. This work demonstrates a functional catalyst with high activity and stability, paving the way for the design of highly efficient heterogeneous catalysts for phenolic pollutant degradation.

Abstract

Heterogeneous advanced oxidation processes (AOPs) based on non-radical reactive species are considered as a powerful technology for wastewater purification due to their long half-lives and high adaptation in a wide pH range. Herein, we fabricate surface Co defect-rich spinel ZnCo2O4 porous nanosheets, which can generate ≡CoIV=O and 1O2 over a wide pH range of 3.81–10.96 by the formation of amphoteric ≡Zn(OH)2 in peroxymonosulfate (PMS) activation process. Density functional theory (DFT) calculations show Co defect-rich ZnCo2O4 possesses much stronger adsorption ability and more electron transfer to PMS. Moreover, the adsorption mode changes from terminal oxygen Co–O–Co to Co–O, accelerating the polarization of adjacent oxygen, which is beneficial to the generation of ≡CoIV=O and 1O2. Co defect-rich ZnCo2O4 porous nanosheets exhibit highly active PMS activation activity and stability in p-nitrophenol (PNP) degradation, whose toxicity of degradation intermediates is significant reduction. The Co defect-rich ZnCo2O4 nanosheet catalyst sponge/PMS system achieved stable and efficient removal of PNP with a removal efficiency higher than 93% over 10 h. This work highlights the development of functional catalyst and provides an atomic-level understanding into non-radical PMS activation process in wastewater treatment.

Electronic Supplementary Material

Download File(s)
6836_ESM.pdf (2 MB)

References

[1]

Li, J.; Liu, Q.; Ji, Q. Q.; Lai, B. Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM). Appl. Catal. B: Environ. 2017, 200, 633–646.

[2]

Zhao, C. X.; Xue, L.; Shi, H. X.; Chen, W. Q.; Zhong, Y.; Zhang, Y.; Zhou, Y. P.; Huang, K. M. Simultaneous degradation of p-nitrophenol and reduction of Cr(VI) in one step using microwave atmospheric pressure plasma. Water Res. 2022, 212, 118124.

[3]

Tian, X. K.; Wang, X.; Nie, Y. L.; Yang, C.; Dionysiou, D. D. Hydroxyl radical-involving p-nitrophenol oxidation during its reduction by nanoscale sulfidated zerovalent iron under anaerobic conditions. Environ. Sci. Technol. 2021, 55, 2403–2410.

[4]

Chen, D. Y.; Wu, W. N.; Zhao, X. Y.; Feng, D. Y.; Zhao, R.; Zhu, G. S. Continuous polypyrrole nanotubes encapsulated Co3O4 nanoparticles with oxygen vacancies and electron transport channels boosting peroxymonosulfate activation. Nano Res. 2023, 16, 11018–11029.

[5]

Li, Y. H.; Lin, D. Y.; Li, Y. F.; Jiang, P. K.; Fang, X. B.; Yu, B. Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline. Nano Res. 2023, 16, 155–165.

[6]

Jawad, A.; Zhan, K.; Wang, H. B.; Shahzad, A.; Zeng, Z. H.; Wang, J.; Zhou, X. Q.; Ullah, H.; Chen, Z. L.; Chen, Z. Q. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-Redox magnesium oxide. Environ. Sci. Technol. 2020, 54, 2476–2488.

[7]

Mi, X. Y.; Wang, P. F.; Xu, S. Z.; Su, L. N.; Zhong, H.; Wang, H. T.; Li, Y.; Zhan, S. H. Almost 100% peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem., Int. Ed. 2021, 60, 4588–4593.

[8]

Yang, L. J.; Chen, Z. X.; Cao, Q.; Liao, H. R.; Gao, J.; Zhang, L.; Wei, W. Y.; Li, H.; Lu, J. M. Structural regulation of photocatalyst to optimize hydroxyl radical production pathways for highly efficient photocatalytic oxidation. Adv. Mater. 2024, 36, 2306758.

[9]

Wei, J. L.; Rong, K.; Wang, Y. C.; Liu, L.; Fang, Y. X.; Dong, S. J. Hierarchical porous nanosheets of Co-Mn bimetallic oxide from deep eutectic solvent for highly efficient peroxymonosulfate activation. Nano Res. 2023, 16, 10381–10391.

[10]

Wang, Y.; Ge, Y.; Wang, R. D.; Liu, Z. F.; Yin, Z. L.; Yang, Z.; Liu, F. Q.; Yang, W. B. MOF-derived Ni/ZIF-8/ZnO arrays on carbon fiber cloth for efficient adsorption-catalytic oxidation. Small 2023, 19, 2303928.

[11]

Liu, X. Y.; Yu, H. R.; Ji, J. H.; Chen, Z.; Ran, M. X.; Zhang, J. L.; Xing, M. Y. Graphene oxide-supported three-dimensional cobalt-nickel bimetallic sponge-mediated peroxymonosulfate activation for phenol degradation. ACS EST Eng. 2021, 1, 1705–1714.

[12]

Luo, M. Q.; Wang, Z. Y.; Zhang, C.; Song, B.; Li, D. M.; Cao, P. W.; Peng, X. Q.; Liu, S. L. Advanced oxidation processes and selection of industrial water source: A new sight from natural organic matter. Chemosphere 2022, 303, 135183.

[13]

Qian, M. Y.; Wu, X. L.; Lu, M. C.; Huang, L. Z.; Li, W. X.; Lin, H. J.; Chen, J. R.; Wang, S. B.; Duan, X. G. Modulation of charge trapping by island-like single-atom cobalt catalyst for enhanced photo-Fenton-like reaction. Adv. Funct. Mater. 2023, 33, 2208688.

[14]

Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 1981, 103, 2884–2886.

[15]

Hohenberger, J.; Ray, K.; Meyer, K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat. Commun. 2012, 3, 720.

[16]

Yang, P. Z.; Cao, Z. H.; Long, Y. H.; Liu, D. F.; Huang, W. L.; Zhan, S. H.; Li, M. Regulating the local electronic structure of copper single atoms with unsaturated B,O-coordination for selective 1O2 generation. ACS Catal. 2023, 13, 12414–12424.

[17]

Ali, J.; Wenli, L.; Shahzad, A.; Ifthikar, J.; Aregay, G. G.; Shahib, I. I.; Elkhlifi, Z.; Chen, Z. L.; Chen, Z. Q. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency. Water Res. 2020, 181, 115862.

[18]

Wu, X. H.; Kim, J. H. Outlook on single atom catalysts for persulfate-based advanced oxidation. ACS EST Eng. 2022, 2, 1776–1796.

[19]

Wu, Q. Y.; Yang, Z. W.; Wang, Z. W.; Wang, W. L. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation. Proc. Natl. Acad. Sci. USA 2023, 120, e2219923120.

[20]

Huang, M. J.; Li, Y. S.; Zhang, C. Q.; Cui, C.; Huang, Q. Q.; Li, M. K.; Qiang, Z. M.; Zhou, T.; Wu, X. H.; Yu, H. Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.

[21]

Li, F.; Wang, P. F.; Zhang, T.; Li, M. M.; Yue, S.; Zhan, S. H.; Li, Y. Efficient removal of antibiotic resistance genes through 4f-2p-3d gradient orbital coupling mediated Fenton-like redox processes. Angew. Chem., Int. Ed. 2023, 62, e202313298.

[22]

Zong, Y.; Zhang, H.; Zhang, X. M.; Liu, W.; Xu, L. Q.; Wu, D. L. High-valent cobalt-oxo species triggers hydroxyl radical for collaborative environmental decontamination. Appl. Catal. B: Environ. 2022, 300, 120722.

[23]

Li, X.; Wen, X.; Lang, J. Y.; Wei, Y.; Miao, J.; Zhang, X. C.; Zhou, B. X.; Long, M. C.; Alvarez, P. J. J.; Zhang, L. Z. CoN1O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV)=O generation. Angew. Chem., Int. Ed. 2023, 62, e202303267.

[24]

Zhang, X. K.; Liu, J.; Zhang, H. Z.; Wan, Z.; Li, J. Uncovering the pathway of peroxymonosulfate activation over Co0.5Zn0.5O nanosheets for singlet oxygen generation: Performance and membrane application. Appl. Catal. B: Environ. 2023, 327, 122429.

[25]

Bao, Y.; Lian, C.; Huang, K.; Yu, H. R.; Liu, W. Y.; Zhang, J. L.; Xing, M. Y. Generating high-valent iron-oxo ≡FeIV=O complexes in neutral microenvironments through peroxymonosulfate activation by Zn-Fe layered double hydroxides. Angew. Chem., Int. Ed. 2022, 61, e202209542.

[26]

Liang, P.; Tuoheti, Z.; Liu, Z. H. Controlling the structure and morphology of zinc borate by adjusting the reaction temperature and pH value: Formation mechanisms and luminescent properties. RSC Adv. 2017, 7, 3695–3703.

[27]

Wu, Y. L.; Zeng, S.; Dong, Y. H.; Fu, Y. H.; Sun, H.; Yin, S. Y.; Guo, X. Y.; Qin, W. P. Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts. RSC Adv. 2018, 8, 11395–11402.

[28]

Chen, P.; Sun, F. Z.; Wang, W.; Tan, F. T.; Wang, X. Y.; Qiao, X. L. Facile one-pot fabrication of ZnO2 particles for the efficient Fenton-like degradation of tetracycline. J. Alloys Compd. 2020, 834, 155220.

[29]

Chen, P.; Dong, N. N.; Zhang, J. J.; Wang, W.; Tan, F. T.; Wang, X. Y.; Qiao, X. L.; Keung Wong, P. Investigation on visible-light photocatalytic performance and mechanism of zinc peroxide for tetracycline degradation and Escherichia coli inactivation. J. Colloid Interface Sci. 2022, 624, 137–149.

[30]

Wang, J. W.; Wang, B. B.; Feng, A. L.; Jia, Z. R.; Wu, G. L. Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloys Compd. 2020, 834, 155092.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[33]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[34]

Li, Z. L.; Kang, J.; Tang, Y. W.; Jin, C. Y.; Luo, H. Y.; Li, S. Y.; Liu, J. Y.; Wang, M.; Lv, C. M. The enhanced P-nitrophenol degradation with Fe/Co3O4 mesoporous nanosheets via peroxymonosulfate activation and its mechanism insight. J. Alloys Compd. 2021, 858, 157739.

[35]

Venkatachalam, V.; Alsalme, A.; Alswieleh, A.; Jayavel, R. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem. Eng. J. 2017, 321, 474–483.

[36]

Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W. et al. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 2018, 8, 3803–3811.

[37]

Xiao, Y. C.; Li, H.; Xie, K. Activating lattice oxygen at the twisted surface in a mesoporous CeO2 single crystal for efficient and durable catalytic CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 5240–5244.

[38]

Lin, G. X.; Ju, Q. J.; Liu, L. J.; Guo, X. Y.; Zhu, Y.; Zhang, Z.; Zhao, C. D.; Wan, Y. J.; Yang, M. H.; Huang, F. Q. et al. Caged-cation-induced lattice distortion in bronze TiO2 for cohering nanoparticulate hydrogen evolution electrocatalysts. ACS Nano 2022, 16, 9920–9928.

[39]

He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Lett. 2018, 3, 1373–1380.

[40]

Zhang, D. P.; Li, Y. X.; Wang, P. F.; Qu, J. Y.; Li, Y.; Zhan, S. H. Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment. Nat. Commun. 2023, 14, 3538.

[41]

Wu, J.; Wang, X.; Zheng, W. H.; Sun, Y.; Xie, Y.; Ma, K. K.; Zhang, Z.; Liao, Q. L.; Tian, Z.; Kang, Z. et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. J. Am. Chem. Soc. 2022, 144, 19163–19172.

[42]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[43]

Wu, D.; Chu, M. H.; Xu, Y. S.; Liu, X. M.; Duan, X. G.; Fan, X. B.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Peng, W. C. Facilely achieved enhancement of Fenton-like reactions by constructing electric microfields. J. Colloid Interface Sci. 2023, 633, 967–978.

[44]

Yu, F. B.; Jia, C.; Wu, X.; Sun, L. M.; Shi, Z. J.; Teng, T.; Lin, L. T.; He, Z. L.; Gao, J.; Zhang, S. C. et al. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat. Commun. 2023, 14, 4975.

[45]

He, Z.; Chen, M. S.; Xu, M.; Zhou, Y. T.; Zhang, Y. Q.; Hu, G. Z. LaCo0.5Ni0.5O3 perovskite for efficient sulfafurazole degradation via peroxymonosulfate activation: Catalytic mechanism of interfacial structure. Appl. Catal. B: Environ. 2023, 335, 122883.

[46]

Li, N.; Li, R.; Duan, X. G.; Yan, B. B.; Liu, W.; Cheng, Z. J.; Chen, G. Y.; Hou, L.; Wang, S. B. Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon. Environ. Sci. Technol. 2021, 55, 16163–16174.

[47]

Xiao, C.; Hu, Y. Y.; Li, Q. T.; Liu, J. Y.; Li, X.; Shi, Y. Y.; Chen, Y. C.; Cheng, J. H.; Zhu, X. Q.; Wang, G. B. et al. Degradation of sulfamethoxazole by super-hydrophilic MoS2 sponge co-catalytic Fenton: Enhancing Fe2+/Fe3+ cycle and mass transfer. J. Hazard. Mater. 2023, 458, 131878.

[48]

Zhang, X.; Xu, B. K.; Wang, S. W.; Li, X.; Wang, C.; Xu, Y. H.; Zhou, R.; Yu, Y.; Zheng, H. L.; Yu, P. et al. Carbon nitride nanotubes anchored with high-density CuN x sites for efficient degradation of antibiotic contaminants under photo-Fenton process: Performance and mechanism. Appl. Catal. B: Environ. 2022, 306, 121119.

[49]

Hirani, R. A. K.; Wu, H.; Asif, A. H.; Rafique, N.; Shi, L.; Zhang, S.; Wu, Z. T.; Zhang, L. C.; Wang, S. B.; Yin, Y. et al. Cobalt oxide functionalized ceramic membrane for 4-hydroxybenzoic acid degradation via peroxymonosulfate activation. J. Hazard. Mater. 2023, 448, 130874.

[50]

Qian, J. S.; Gao, X.; Pan, B. C. Nanoconfinement-mediated water treatment: From fundamental to application. Environ. Sci. Technol. 2020, 54, 8509–8526.

[51]

Xu, S. Z.; Mi, X. Y.; Wang, P. F.; Mao, Y. S.; Zhou, Q. X.; Zhan, S. H. Highly efficient peroxymonosulfate activation on electron-enriched ruthenium dual-atom sites catalysts for enhanced water purification. Adv. Funct. Mater. 2023, 33, 2308204.

[52]

Guo, Z. Y.; Si, Y.; Xia, W. Q.; Wang, F.; Liu, H. Q.; Yang, C.; Zhang, W. J.; Li, W. W. Electron delocalization triggers nonradical Fenton-like catalysis over spinel oxides. Proc. Natl. Acad. Sci. USA 2022, 119, e2201607119.

Nano Research
Pages 8025-8035
Cite this article:
Zhang X, Zhang Y, Tian J, et al. Generating 1O2 and CoIV=O through efficient peroxymonosulfate activation by ZnCo2O4 nanosheets for pollutant control. Nano Research, 2024, 17(9): 8025-8035. https://doi.org/10.1007/s12274-024-6836-6
Topics:

720

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 April 2024
Revised: 03 June 2024
Accepted: 22 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return