AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Poly (heptazine imide) nanocrystal for hydrogen peroxide evolution in the dark by accumulating photo-generated electrons

Song Kou1,§Shu Lian2,§Xiaodong Xie2Wei Ren3Yu Jin1Jiahui Bao1Honghui Ou1( )Guidong Yang1( )
A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China

§ Song Kou and Shu Lian contributed equally to this work.

Show Author Information

Graphical Abstract

Poly (heptazine imide) nanocrystals synthesized by salt molten can produce accumulated photogenerated electrons. These accumulated photogenerated electrons exhibited efficient catalytic performance toward H2O2 evolution in the dark by oxygen molecule activation.

Abstract

Organic conjugated polymers have received extensive attention due to their unique electronic properties. However, there have been relatively few reports on the dark photocatalytic reactions utilizing organic conjugated polymers. Herein, we report the successful synthesis of an organic conjugated polymer based on poly (heptazine imide) nanocrystals (CNNCs) for H2O2 evolution and biomedical applications using a simple salt molten method and sonication–centrifugation process. The results show that these colloid CNNCs have the characteristics of photogenerated electrons accumulation and realize dark photocatalysis with high reducibility under visible light irradiation. Notably, these accumulating photogenerated electrons can reduce O2 in darkness to produce H2O2. In addition, cytotoxicity tests were conducted and it was found that H2O2 produced under dark conditions could oxidize L-arginine (L-Arg) to NO, which effectively killed tumors in the dark. This work provides an important strategy to construct organic conjugated semiconductor nanocrystals and applying them to future energy and biomedical fields.

Electronic Supplementary Material

Download File(s)
6837_ESM.pdf (1.8 MB)

References

[1]

Zhou, M.; Ou, H. H.; Li, S. R.; Qin, X.; Fang, Y. X.; Lee, S. C.; Wang, X. C.; Ho, W. Photocatalytic air purification using functional polymeric carbon nitrides. Adv. Sci. 2021, 8, 2102376.

[2]
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202405637.
[3]

Fang, Y. X.; Hou, Y. D.; Fu, X. Z.; Wang, X. C. Semiconducting polymers for oxygen evolution reaction under light illumination. Chem. Rev. 2022, 122, 4204–4256.

[4]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem. 2023, 135, e202302253.

[5]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

[6]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[7]

Zheng, D. D.; Wang, Q.; Pan, Z. M.; Wang, S. B.; Hou, Y. D.; Zhang, G. G. Poly(triazine imide) nanospheres with spatially exposed prismatic facets for photocatalytic overall water splitting. Sci. China Mater. 2024, 67, 1900–1906.

[8]

Zhang, C.; Li, Y.; Li, M. Q.; Shuai, D. M.; Zhou, X. Y.; Xiong, X. Y.; Wang, C.; Hu, Q. Continuous photocatalysis via photo-charging and dark-discharging for sustainable environmental remediation: Performance, mechanism, and influencing factors. J. Hazard. Mater. 2021, 420, 126607.

[9]

Rogolino, A.; Savateev, O. Photochargeable semiconductors: In “dark photocatalysis” and beyond. Adv. Funct. Mater. 2023, 33, 2305028.

[10]

Tsui, E. Y.; Hartstein, K. H.; Gamelin, D. R. Selenium redox reactivity on colloidal CdSe quantum dot surfaces. J. Am. Chem. Soc. 2016, 138, 11105–11108.

[11]

Mohamed, H. H.; Mendive, C. B.; Dillert, R.; Bahnemann, D. W. Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: A stopped flow study. J. Phys. Chem. A 2011, 115, 2139–2147.

[12]

Lau, V. W. H.; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M. C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Dark photocatalysis: Storage of solar energy in carbon nitride for time-delayed hydrogen generation. Angew. Chem., Int. Ed. 2017, 56, 510–514.

[13]

Savateev, O. Photocharging of semiconductor materials: Database, quantitative data analysis, and application in organic synthesis. Adv. Energy Mater. 2022, 12, 2200352.

[14]

Bedja, I.; Hotchandani, S.; Kamat, P. V. Photoelectrochemistry of quantized WO3 colloids: Electron storage, electrochromic, and photoelectrochromic effects. J. Phys. Chem. 1993, 97, 11064–11070.

[15]

Markushyna, Y.; Lamagni, P.; Teutloff, C.; Catalano, J.; Lock, N.; Zhang, G. G.; Antonietti, M.; Savateev, A. Green radicals of potassium poly(heptazine imide) using light and benzylamine. J. Mater. Chem. A 2019, 7, 24771–24775.

[16]

Stanley, P. M.; Sixt, F.; Warnan, J. Decoupled solar energy storage and dark photocatalysis in a 3D metal-organic framework (Adv. Mater. 1/2023). Adv. Mater. 2023, 35, 2370006.

[17]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. 2022, 134, e202117347.

[18]

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

[19]

Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.

[20]

Almajidi, Y. Q.; Albadri, A. A.; Jwaid, M. M.; Khalaf, Y. T. Utilization of semiconductor nanocrystals in cancer diagnose and treatment. Maaen J. Med. Sci. 2023, 2, 5.

[21]

Belal, F.; Mabrouk, M.; Hammad, S.; Ahmed, H.; Barseem, A. Recent applications of quantum dots in pharmaceutical analysis. J. Fluoresc. 2024, 34, 119–138.

[22]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[23]

Wu, L. H.; Willis, J. J.; McKay, I. S.; Diroll, B. T.; Qin, J.; Cargnello, M.; Tassone, C. J. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 2017, 548, 197–201.

[24]

Zhao, S.; Liang, Q.; Li, Z. Y.; Shi, H.; Wu, Z. Y.; Huang, H.; Kang, Z. H. Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction. Nano Res. 2022, 15, 5953–5961.

[25]

Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal semiconductor nanocrystal lasers and laser diodes. Chem. Rev. 2023, 123, 8251–8296.

[26]

Xu, Y.; Cao, M. H.; Huang, S. M. Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Res. 2021, 14, 3773–3794.

[27]
Almutlaq, J.; Liu, Y.; Mir, W. J.; Sabatini, R. P.; Englund, D.; Bakr, O. M.; Sargent, E. H. Engineering colloidal semiconductor nanocrystals for quantum information processing. Nat. Nanotechnol., in press, DOI: 10.1038/s41565-024-01606-4.
[28]
Zou, Y. M.; Li, S. Y.; Zheng, D. D.; Feng, J. Y.; Wang, S. B.; Hou, Y. D.; Zhang, G. G. Extended light absorption and accelerated charge migration in ultrathin twisted carbon nitride nanoplates for efficient solar hydrogen production. Sci. China Chem., in press, DOI: 10.1007/s11426-024-2076-3.
[29]

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

[30]

Zhang, G. G.; Lan, Z. A.; Wang, X. C. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 15712–15727.

[31]

Wang, L.; Huang, W.; Li, R.; Gehrig, D.; Blom, P. W. M.; Landfester, K.; Zhang, K. A. I. Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew. Chem., Int. Ed. 2016, 55, 9783–9787.

[32]

Chen, Y. Z.; Yan, C. X.; Dong, J. Q.; Zhou, W. J.; Rosei, F.; Feng, Y.; Wang, L. N. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099.

[33]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[34]

Chen, Z. P.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M. G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. “The easier the better” preparation of efficient photocatalysts—Metastable poly(heptazine imide) salts. Adv. Mater. 2017, 29, 1700555.

[35]

Zhang, Y. H.; Yang, Z. C.; Zheng, D. D.; Wang, S. B.; Hou, Y. D.; Anpo, M.; Zhang, G. G. Surface cyano groups optimize the charge transfer of poly heptazine imide for enhanced photocatalytic H2 evolution. Int. J. Hydrog. Energy 2024, 69, 372–380.

[36]

Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L. et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: Melamine functionalized poly(heptazine imide). Adv. Energy Mater. 2021, 11, 2003016.

[37]

Jin, Y. X.; Zheng, D. D.; Fang, Z. P.; Pan, Z. M.; Wang, S. B.; Hou, Y. D.; Savateev, O.; Zhang, Y. F.; Zhang, G. G. Salt-melt synthesis of poly(heptazine imide) in binary alkali metal bromides for enhanced visible-light photocatalytic hydrogen production. Interdiscip. Mater. 2024, 3, 389–399.

[38]

Zhu, C. F.; Luo, X.; Liu, C. Y.; Wang, Y.; Chen, X. H.; Wang, Y.; Hu, Q.; Wu, X. J.; Liu, B. Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Res. 2022, 15, 8760–8770.

[39]

Yang, W. X.; Godin, R.; Kasap, H.; Moss, B.; Dong, Y. F.; Hillman, S. A. J.; Steier, L.; Reisner, E.; Durrant, J. R. Electron accumulation induces efficiency bottleneck for hydrogen production in carbon nitride photocatalysts. J. Am. Chem. Soc. 2019, 141, 11219–11229.

[40]

Ou, H. H.; Tang, C.; Chen, X. R.; Zhou, M.; Wang, X. C. Solvated electrons for photochemistry syntheses using conjugated carbon nitride polymers. ACS Catal. 2019, 9, 2949–2955.

[41]

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. 2014, 126, 7409–7413.

[42]

Nimbalkar, D. B.; Nguyen, V. C.; Shih, C. Y.; Teng, H. Melem-derived poly(heptazine imide) for effective charge transport and photocatalytic reforming of cellulose into H2 and biochemicals under visible light. Appl. Catal. B: Environ. 2022, 316, 121601.

[43]

Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

[44]

Wang, J. H.; Shen, Y. F.; Li, Y.; Liu, S. Q.; Zhang, Y. J. Crystallinity modulation of layered carbon nitride for enhanced photocatalytic activities. Chem.—Eur. J. 2016, 22, 12449–12454.

[45]

Yang, Q. S.; Hu, S. N.; Yao, Y. X.; Lin, X. G.; Du, H. W.; Yuan, Y. P. Engineering graphitic carbon nitride with expanded interlayer distance for boosting photocatalytic hydrogen evolution. Chin. J. Catal. 2021, 42, 217–224.

[46]

Wang, W. K.; Zhang, W.; Cai, Y. J.; Wang, Q.; Deng, J.; Chen, J. S.; Jiang, Z. F.; Zhang, Y. Z.; Yu, C. Introducing B–N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets. Nano Res. 2023, 16, 2177–2184.

[47]

Samanta, S.; Srivastava, R. A novel method to introduce acidic and basic Bi-functional sites in graphitic carbon nitride for sustainable catalysis: Cycloaddition, esterification, and transesterification reactions. Sustainable Energy Fuels 2017, 1, 1390–1404.

[48]

Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. Y.; Yang, Y. K.; Lai, Y. K.; Lin, Z. Q. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.

[49]

He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z. Y.; Zhang, J.; Yu, X. H.; Hu, Y. P.; Huang, W.; Li, Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. 2023, 16, 4524–4530.

[50]

Zhang, G. Q.; Xu, Y. S.; He, C. X.; Zhang, P. X.; Mi, H. W. Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Appl. Catal. B: Environ. 2021, 283, 119636.

[51]

Ou, H. H.; Chen, X. R.; Lin, L. H.; Fang, Y. X.; Wang, X. C. Biomimetic donor–acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew. Chem., Int. Ed. 2018, 57, 8729–8733.

[52]

Martynenko, I. V.; Baimuratov, A. S.; Weigert, F.; Soares, J. X.; Dhamo, L.; Nickl, P.; Doerfel, I.; Pauli, J.; Rukhlenko, I. D.; Baranov, A. V. et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 2019, 12, 1595–1603.

[53]

Wang, Y.; Du, P. P.; Pan, H. Z.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y. W.; Tang, N. J.; Liu, G. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 2019, 31, 1807540.

[54]

Cui, Q. L.; Xu, J. S.; Wang, X. Y.; Li, L. D.; Antonietti, M.; Shalom, M. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew. Chem., Int. Ed. 2016, 55, 3672–3676.

[55]

Xia, P. F.; Antonietti, M.; Zhu, B. C.; Heil, T.; Yu, J. G.; Cao, S. W. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 2019, 29, 1900093.

[56]

Wang, J. J.; Li, P.; Wang, Y.; Liu, Z. Y.; Wang, D. Q.; Liang, J. J.; Fan, Q. H. New strategy for the persistent photocatalytic reduction of U(VI): Utilization and storage of solar energy in K+ and cyano co-decorated poly(heptazine imide). Adv. Sci. 2023, 10, 2205542.

[57]

Podjaski, F.; Kröger, J.; Lotsch, B. V. Toward an aqueous solar battery: Direct electrochemical storage of solar energy in carbon nitrides. Adv. Mater. 2018, 30, 1705477.

[58]

Schlomberg, H.; Kröger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. et al. Structural insights into poly(heptazine imides): A light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 2019, 31, 7478–7486.

[59]

Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 2018, 9, 1680.

[60]

Lian, S.; Lu, Y. S.; Cheng, Y. L.; Yu, T.; Xie, X. D.; Liang, H. Y.; Ye, Y. Y.; Jia, L. S-nitrosocaptopril interrupts adhesion of cancer cells to vascular endothelium by suppressing cell adhesion molecules via inhibition of the NF-кB and JAK/STAT signal pathways in endothelial cells. Eur. J. Pharmacol. 2016, 791, 62–71.

[61]

Zhou, Y. Y.; Lin, M.; Wang, J.; Chen, F.; Li, F. Y.; Chen, W. G.; Han, L. Y.; Wang, C.; Chen, J. M.; Shao, J. W. et al. A novel S-nitrosocaptopril monohydrate for pulmonary arterial hypertension: H2O and –SNO intermolecular stabilization chemistry. Free Radic. Biol. Med. 2018, 129, 107–115.

Nano Research
Pages 8036-8044
Cite this article:
Kou S, Lian S, Xie X, et al. Poly (heptazine imide) nanocrystal for hydrogen peroxide evolution in the dark by accumulating photo-generated electrons. Nano Research, 2024, 17(9): 8036-8044. https://doi.org/10.1007/s12274-024-6837-5
Topics:

242

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 June 2024
Revised: 20 June 2024
Accepted: 22 June 2024
Published: 18 July 2024
© Tsinghua University Press 2024
Return