AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advanced nanotherapeutics inspired by the abnormal microenvironment of leukemia

Hao Zhang1,§Tian Liu1,2,§Mengyu Liu1Shuo Wang1Yuetong Huang1Yifan Ma1Bingjun Sun1,2Zhonggui He1,2Jin Sun1,2( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China

§ Hao Zhang and Tian Liu contributed equally to this work.

Show Author Information

Graphical Abstract

This review summarized nano-based treatment strategies for modulating and targeting the abnormal microenvironment of leukemia.

Abstract

During the development of leukemia, the overgrowth of leukemia cells in the bone marrow transforms the normal hematopoietic microenvironment into the leukemia microenvironment which favors its growth and inhibits normal hematopoietic stem cells. The leukemia microenvironment exhibits abnormalities in redox substances, metabolism, immune response, mesenchymal cells, extracellular matrix, stromal cells, hypoxia, and more. These factors collectively provide a shelter for the malignant proliferation of leukemia cells. Recently, as the understanding of the leukemia microenvironment deepens, targeting or remodeling the abnormal leukemia microenvironment is becoming an effective strategy for leukemia treatment. Nanomedicine technology can effectively change pharmacokinetic profiles, thus demonstrating many advantages in modulating the leukemia microenvironment and improving therapeutic selectivity. In this review, we outline the characteristics of abnormal leukemia bone marrow microenvironment, focusing on the abnormal changes in the redox, metabolic and immune microenvironment. We also summarize emerging nanotechnology strategies in remodeling or targeting the aforementioned abnormal microenvironment. In addition, the unique advantages and bright prospects of nanotechnology in remodeling and targeting the leukemia microenvironment are discussed.

References

[1]

Bhat, A. A.; Younes, S. N.; Raza, S. S.; Zarif, L.; Nisar, S.; Ahmed, I.; Mir, R.; Kumar, S.; Sharawat, S. K.; Hashem, S. et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol. Cancer 2020, 19, 57.

[2]

Luo, Y. S.; Wang, X.; Shen, J.; Yao, J. Macrophage migration inhibitory factor in the pathogenesis of leukemia (Review). Int. J. Oncol. 2021, 59, 62.

[3]

Whiteley, A. E.; Price, T. T.; Cantelli, G.; Sipkins, D. A. Leukaemia: A model metastatic disease. Nat. Rev. Cancer 2021, 21, 461–475.

[4]

Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48.

[5]

Ci, T. Y.; Zhang, W. T.; Qiao, Y. Y.; Li, H. J.; Zang, J.; Li, H. J.; Feng, N. P.; Gu, Z. Delivery strategies in treatments of leukemia. Chem. Soc. Rev. 2022, 51, 2121–2144.

[6]

Bhansali, R. S.; Pratz, K. W.; Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 2023, 16, 29.

[7]

Miller, K. D.; Nogueira, L.; Devasia, T.; Mariotto, A. B.; Yabroff, K. R.; Jemal, A.; Kramer, J.; Siegel, R. L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436.

[8]

Kumar, R.; Godavarthy, P. S.; Krause, D. S. The bone marrow microenvironment in health and disease at a glance. J. Cell Sci. 2018, 131, jcs201707.

[9]

Szade, K.; Gulati, G. S.; Chan, C. K. F.; Kao, K. S.; Miyanishi, M.; Marjon, K. D.; Sinha, R.; George, B. M.; Chen, J. Y.; Weissman, I. L. Where hematopoietic stem cells live: The bone marrow niche. Antioxid. Redox Signal. 2018, 29, 191–204.

[10]

Méndez-Ferrer, S.; Bonnet, D.; Steensma, D. P.; Hasserjian, R. P.; Ghobrial, I. M.; Gribben, J. G.; Andreeff, M.; Krause, D. S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 2020, 20, 285–298.

[11]

Menter, T.; Tzankov, A. Tumor microenvironment in acute myeloid leukemia: Adjusting niches. Front. Immunol. 2022, 13, 811144.

[12]

Kuek, V.; Hughes, A. M.; Kotecha, R. S.; Cheung, L. C. Therapeutic targeting of the leukaemia microenvironment. Int. J. Mol. Sci. 2021, 22, 6888.

[13]

Duarte, D.; Hawkins, E. D.; Lo Celso, C. The interplay of leukemia cells and the bone marrow microenvironment. Blood 2018, 131, 1507–1511.

[14]

Zoine, J. T.; Moore, S. E.; Velasquez, M. P. Leukemia’s next top model? Syngeneic models to advance adoptive cellular therapy. Front. Immunol. 2022, 13, 867103.

[15]

Xu, B. Y.; Hu, R.; Liang, Z.; Chen, T.; Chen, J. Y.; Hu, Y. X.; Jiang, Y. R.; Li, Y. H. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev. 2021, 48, 100786.

[16]

Tan, Z. Y.; Kan, C.; Wong, M.; Sun, M. Q.; Liu, Y. K.; Yang, F.; Wang, S. Y.; Zheng, H. Regulation of malignant myeloid leukemia by mesenchymal stem cells. Front. Cell Dev. Biol. 2022, 10, 857045.

[17]

Zanetti, C.; Krause, D. S. “Caught in the net”: The extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp. Hematol. 2020, 89, 13–25.

[18]

Yao, Y. Y.; Li, F. L.; Huang, J. S.; Jin, J.; Wang, H. F. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp. Hematol. Oncol. 2021, 10, 39.

[19]

Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

[20]

Tang, L.; Mei, Y. J.; Shen, Y.; He, S.; Xiao, Q. Q.; Yin, Y.; Xu, Y. G.; Shao, J.; Wang, W.; Cai, Z. H. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int. J. Nanomed. 2021, 16, 5811–5829.

[21]

Bakhtiyari, M.; Liaghat, M.; Aziziyan, F.; Shapourian, H.; Yahyazadeh, S.; Alipour, M.; Shahveh, S.; Maleki-Sheikhabadi, F.; Halimi, H.; Forghaniesfidvajani, R. et al. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: Immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun. Signal. 2023, 21, 252.

[22]

Tatar, A. S.; Nagy-Simon, T.; Tomuleasa, C.; Boca, S.; Astilean, S. Nanomedicine approaches in acute lymphoblastic leukemia. J. Control. Release 2016, 238, 123–138.

[23]

Wan, Z. Y.; Sun, R. Z.; Moharil, P.; Chen, J.; Liu, Y. Z.; Song, X.; Ao, Q. Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J. Leukoc. Biol. 2021, 109, 425–436.

[24]

Janani, G.; Girigoswami, A.; Girigoswami, K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia. J. Biomater. Sci. Polym. Ed. 2024, 35, 415–441.

[25]

Ashoub, M. H.; Razavi, R.; Heydaryan, K.; Salavati-Niasari, M.; Amiri, M. Targeting ferroptosis for leukemia therapy: Exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur. J. Med. Res. 2024, 29, 224.

[26]

Kong, F.; Bai, H. Y.; Ma, M.; Wang, C.; Xu, H. Y.; Gu, N.; Zhang, Y. Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today 2021, 37, 101106.

[27]

Trujillo-Alonso, V.; Pratt, E. C.; Zong, H. L.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M. O.; Longo, V.; Becker, M. W.; Roboz, G. J.; Grimm, J. et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 2019, 14, 616–622.

[28]

Jin, Y. X.; Cai, L. Q.; Yang, Q.; Luo, Z. Y.; Liang, L.; Liang, Y. X.; Wu, B. L.; Ding, L.; Zhang, D. D.; Xu, X. J. et al. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-d-glucan. Carbohydr. Polym. 2020, 240, 116329.

[29]

Karimi, S.; Mahdavi Shahri, M. Medical and cytotoxicity effects of green synthesized silver nanoparticles using Achillea millefolium extract on MOLT-4 lymphoblastic leukemia cell line. J. Med. Virol. 2021, 93, 3899–3906.

[30]

Guo, D. W.; Zhu, L. Y.; Huang, Z. H.; Zhou, H. X.; Ge, Y.; Ma, W. J.; Wu, J.; Zhang, X. Y.; Zhou, X. F.; Zhang, Y. et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013, 34, 7884–7894.

[31]

Sun, Y. X.; Liu, X.; Wang, L.; Xu, L.; Liu, K. L.; Xu, L.; Shi, F. F.; Zhang, Y.; Gu, N.; Xiong, F. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact. Mater. 2022, 10, 117–130.

[32]

Sarangapani, S.; Patil, A.; Ngeow, Y. K.; Elsa Mohan, R.; Asundi, A.; Lang, M. J. Chitosan nanoparticles’ functionality as redox active drugs through cytotoxicity, radical scavenging and cellular behaviour. Integr. Biol. 2018, 10, 313–324.

[33]

Yong, S. B.; Kim, J.; Chung, J. Y.; Ra, S.; Kim, S. S.; Kim, Y. H. Heme oxygenase 1‐targeted hybrid nanoparticle for chemo‐ and immuno‐combination therapy in acute myelogenous leukemia. Adv. Sci. 2020, 7, 2000487.

[34]

Cao, K. X.; Du, Y. Y.; Bao, X.; Han, M. D.; Su, R.; Pang, J. X.; Liu, S. J.; Shi, Z.; Yan, F.; Feng, S. H. Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells. Small 2022, 18, 2106558.

[35]

Yu, Y. H.; Meng, Y. B.; Xu, X.; Tong, T.; He, C.; Wang, L. Y.; Wang, K. T.; Zhao, M. Y.; You, X. R.; Zhang, W. W. et al. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano 2023, 17, 3334–3345.

[36]

Wei, X.; Liao, J. H.; Davoudi, Z.; Zheng, H.; Chen, J. R.; Li, D.; Xiong, X.; Yin, Y. H.; Yu, X. X.; Xiong, J. H. et al. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar. Drugs 2018, 16, 439.

[37]

Qiu, J.; Cheng, R.; Zhang, J.; Sun, H. L.; Deng, C.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 2017, 18, 3207–3214.

[38]

Zhang, Y. B.; Li, Y.; Tian, H. N.; Zhu, Q. X.; Wang, F. F.; Fan, Z. X.; Zhou, S.; Wang, X. W.; Xie, L. Y.; Hou, Z. Q. Redox-responsive and dual-targeting hyaluronic acid-methotrexate prodrug self-assembling nanoparticles for enhancing intracellular drug self-delivery. Mol. Pharmaceutics 2019, 16, 3133–3144.

[39]

Wu, H.; Gao, Y.; Ma, J.; Hu, M. S.; Xia, J.; Bao, S. T.; Liu, Y. X.; Feng, K. Cytarabine delivered by CD44 and bone targeting redox-sensitive liposomes for treatment of acute myelogenous leukemia. Regen. Biomater. 2022, 9, rbac058.

[40]

Nair, R. R.; Piktel, D.; Hathaway, Q. A.; Rellick, S. L.; Thomas, P.; Saralkar, P.; Martin, K. H.; Geldenhuys, W. J.; Hollander, J. M.; Gibson, L. F. Pyrvinium pamoate use in a B cell acute lymphoblastic leukemia model of the bone tumor microenvironment. Pharm. Res. 2020, 37, 43.

[41]

Yin, X. W.; Li, Z. H.; Lyu, C.; Wang, Y.; Ding, S. M.; Ma, C. C.; Wang, J. Y.; Cui, S. Y.; Wang, J. X.; Guo, D. D. et al. Induced effect of zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 2022, 74, 519–531.

[42]

Tinoco, A.; Sárria, M. P.; Loureiro, A.; Parpot, P.; Espiña, B.; Gomes, A. C.; Cavaco-Paulo, A.; Ribeiro, A. BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochem. Eng. J. 2019, 141, 80–88.

[43]

Varshosaz, J.; Anvari, N. Enhanced stability of L‐asparaginase by its bioconjugation to poly(styrene‐co‐maleic acid) and ecoflex nanoparticles. IET Nanobiotechnol. 2018, 12, 466–472.

[44]

Barth, B. M.; Wang, W. Y.; Toran, P. T.; Fox, T. E.; Annageldiyev, C.; Ondrasik, R. M.; Keasey, N. R.; Brown, T. J.; Devine, V. G.; Sullivan, E. C. et al. Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia. Blood Adv. 2019, 3, 2598–2603.

[45]

Li, C. Z.; You, X. R.; Xu, X.; Wu, B. H.; Liu, Y. Y.; Tong, T.; Chen, J.; Li, Y. S.; Dai, C. L.; Ye, Z. T. et al. A metabolic reprogramming amino acid polymer as an immunosurveillance activator and leukemia targeting drug carrier for T‐cell acute lymphoblastic leukemia. Adv. Sci. 2022, 9, 2104134.

[46]

Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017, 12, 813–820.

[47]

Parayath, N. N.; Stephan, S. B.; Koehne, A. L.; Nelson, P. S.; Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 2020, 11, 6080.

[48]

Alhallak, K.; Sun, J.; Muz, B.; Jeske, A.; Yavner, J.; Bash, H.; Park, C.; Lubben, B.; Adebayo, O.; Achilefu, S. et al. Nanoparticle T cell engagers for the treatment of acute myeloid leukemia. Oncotarget 2021, 12, 1878–1885.

[49]

Hassan, E. M.; Zou, S. Novel nanocarriers for silencing anti-phagocytosis CD47 marker in acute myeloid leukemia cells. Colloids Surf. B: Biointerfaces 2022, 217, 112609.

[50]

Cherukula, K.; Nurunnabi, M.; Jeong, Y. Y.; Lee, Y. K.; Park, I. K. A targeted graphene nanoplatform carrying histamine dihydrochloride for effective inhibition of leukemia-induced immunosuppression. J. Biomater. Sci. Polym. Ed. 2018, 29, 734–749.

[51]

Chen, Y. F.; Liang, Y.; Luo, X. J.; Hu, Q. Y. Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis. 2020, 11, 291.

[52]

Dong, C.; Zhang, N. J.; Zhang, L. J. Oxidative stress in leukemia and antioxidant treatment. Chin. Med. J. (Engl.) 2021, 134, 1897–1907.

[53]

Sillar, J. R.; Germon, Z. P.; De Iuliis, G. N.; Dun, M. D. The role of reactive oxygen species in acute myeloid leukaemia. Int. J. Mol. Sci. 2019, 20, 6003.

[54]

Nieborowska-Skorska, M.; Kopinski, P. K.; Ray, R.; Hoser, G.; Ngaba, D.; Flis, S.; Cramer, K.; Reddy, M. M.; Koptyra, M.; Penserga, T. et al. Rac2-MRC-cIII–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012, 119, 4253–4263.

[55]

Hole, P. S.; Zabkiewicz, J.; Munje, C.; Newton, Z.; Pearn, L.; White, P.; Marquez, N.; Hills, R. K.; Burnett, A. K.; Tonks, A. et al. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013, 122, 3322–3330.

[56]

Kaweme, N. M.; Zhou, S.; Changwe, G. J.; Zhou, F. L. The significant role of redox system in myeloid leukemia: From pathogenesis to therapeutic applications. Biomark. Res. 2020, 8, 63.

[57]

Romo-González, M.; Ijurko, C.; Hernández-Hernández, Á. Reactive oxygen species and metabolism in leukemia: A dangerous liaison. Front. Immunol. 2022, 13, 889875.

[58]

Linley, A.; Valle-Argos, B.; Steele, A. J.; Stevenson, F. K.; Forconi, F.; Packham, G. Higher levels of reactive oxygen species are associated with anergy in chronic lymphocytic leukemia. Haematologica 2015, 100, e265–e268.

[59]

Glasauer, A.; Chandel, N. S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101.

[60]

Udensi, U. K.; Tchounwou, P. B. Dual effect of oxidative stress on leukemia cancer induction and treatment. J. Exp. Clin. Cancer Res. 2014, 33, 106.

[61]

Shehata, M.; Schnabl, S.; Demirtas, D.; Hilgarth, M.; Hubmann, R.; Ponath, E.; Badrnya, S.; Lehner, C.; Hoelbl, A.; Duechler, M. et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood 2010, 116, 2513–2521.

[62]

Ding, L.; Zhang, W.; Yang, L. L.; Pelicano, H.; Zhou, K. W.; Yin, R.; Huang, R. B.; Zeng, J. Y. Targeting the autophagy in bone marrow stromal cells overcomes resistance to vorinostat in chronic lymphocytic leukemia. Onco Targets Ther. 2018, 11, 5151–5170.

[63]

Guo, J. F.; Cahill, M. R.; McKenna, S. L.; O’Driscoll, C. M. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol. Adv. 2014, 32, 1396–1409.

[64]

Thakral, D.; Gupta, R.; Khan, A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev. Rep. 2022, 18, 1756–1773.

[65]

Jang, Y. Y.; Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110, 3056–3063.

[66]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[67]

Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19.

[68]

Jiang, L.; Wang, J. M.; Wang, K.; Wang, H.; Wu, Q.; Yang, C.; Yu, Y. Y.; Ni, P.; Zhong, Y. Y.; Song, Z. J. et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021, 138, 689–705.

[69]

Menon, S.; Shrudhi, D. K. S.; Santhiya, R.; Rajeshkumar, S.; Venkat Kumar, S. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf. B: Biointerfaces 2018, 170, 280–292.

[70]

Zhang, J. S.; Wang, H. L.; Bao, Y. P.; Zhang, L. D. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci. 2004, 75, 237–244.

[71]

Jia, X. W.; Liu, Q. Y.; Zou, S. W.; Xu, X. J.; Zhang, L. N. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym. 2015, 117, 434–442.

[72]

Meng, Y.; Zou, S. W.; Jiang, M. J.; Xu, X. J.; Tang, B. Z.; Zhang, L. N. Dendritic nanotubes self-assembled from stiff polysaccharides as drug and probe carriers. J. Mater. Chem. B 2017, 5, 2616–2624.

[73]

Xu, S. Q.; Ping, Z. H.; Xu, X. J.; Zhang, L. N. Changes in shape and size of the stiff branched β-glucan in dimethlysulfoxide/water solutions. Carbohydr. Polym. 2016, 138, 86–93.

[74]

Guo, D. W.; Zhang, J. R.; Huang, Z. H.; Jiang, S. X.; Gu, N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf. B: Biointerfaces 2015, 126, 198–203.

[75]

Zhu, L. Y.; Guo, D. W.; Sun, L. L.; Huang, Z. H.; Zhang, X. Y.; Ma, W. J.; Wu, J.; Xiao, L.; Zhao, Y.; Gu, N. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale 2017, 9, 5489–5498.

[76]

Yusuf, R. Z.; Saez, B.; Sharda, A.; Van Gastel, N.; Yu, V. W. C.; Baryawno, N.; Scadden, E. W.; Acharya, S.; Chattophadhyay, S.; Huang, C. et al. Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood 2020, 136, 1303–1316.

[77]

Vignon, C.; Debeissat, C.; Bourgeais, J.; Gallay, N.; Kouzi, F.; Anginot, A.; Picou, F.; Guardiola, P.; Ducrocq, E.; Foucault, A. et al. Involvement of GPx-3 in the reciprocal control of redox metabolism in the leukemic niche. Int. J. Mol. Sci. 2020, 21, 8584.

[78]

Zhang, D. D.; Luo, Z. Y.; Jin, Y. X.; Chen, Y. L.; Yang, T.; Yang, Q.; Wu, B. L.; Shang, Y. F.; Liu, X. Y.; Wei, Y. C. et al. Azelaic acid exerts antileukemia effects against acute myeloid leukemia by regulating the prdxs/ROS signaling pathway. Oxid. Med. Cell. Longev. 2020, 2020, 1295984.

[79]

Feng, Y. B.; Hua, X. X.; Niu, R. W.; Du, Y.; Shi, C. J.; Zhou, R. P.; Chen, F. H. ROS play an important role in ATPR inducing differentiation and inhibiting proliferation of leukemia cells by regulating the PTEN/PI3K/AKT signaling pathway. Biol. Res. 2019, 52, 26.

[80]

Wu, S. Y.; Wen, Y. C.; Ku, C. C.; Yang, Y. C.; Chow, J. M.; Yang, S. F.; Lee, W. J.; Chien, M. H. Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses. J. Biomed. Sci. 2019, 26, 63.

[81]

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive Oxygen Species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

[82]

Ouyang, X. F.; Gong, Y. P. One stone, two birds: N6-methyladenosine RNA modification in leukemia stem cells and the tumor immune microenvironment in acute myeloid leukemia. Front. Immunol. 2022, 13, 912526.

[83]

Liu, J.; Liu, M. X.; Zhang, H. X.; Guo, W. High-contrast fluorescence diagnosis of cancer cells/tissues based on β-lapachone-triggered ROS amplification specific in cancer cells. Angew. Chem. Int. Ed. Engl. 2021, 60, 12992–12998.

[84]

Meng, F. F.; Hennink, W. E.; Zhong, Z. Y. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198.

[85]

Fang, T. X.; Cao, X. N.; Ibnat, M.; Chen, G. J. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J. Nanobiotechnol. 2022, 20, 354.

[86]

Ferraris, A. M.; Rolfo, M.; Mangerini, R.; Gaetani, G. F. Increased glutathione in chronic lymphocytic leukemia lymphocytes. Am. J. Hematol. 1994, 47, 237–238.

[87]

Singh Ghalaut, V.; Kharb, S.; Ghalaut, P. S.; Rawal, A. Lymphocyte glutathione levels in acute leukemia. Clin. Chim. Acta 1999, 285, 85–89.

[88]

Pei, S. S.; Minhajuddin, M.; Callahan, K. P.; Balys, M.; Ashton, J. M.; Neering, S. J.; Lagadinou, E. D.; Corbett, C.; Ye, H. B.; Liesveld, J. L. et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 2013, 288, 33542–33558.

[89]

Luo, C.; Sun, J.; Sun, B. J.; Liu, D.; Miao, L.; Goodwin, T. J.; Huang, L.; He, Z. G. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 2016, 12, 6353–6362.

[90]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[91]
Wei, T. T.; Pan, T. Z.; Peng, X. P.; Zhang, M. J.; Guo, R.; Guo, Y. Q.; Mei, X. H.; Zhang, Y.; Qi, J.; Dong, F. et al. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds. Nat. Nanotechnol. in press, DOI: 10.1038/s41565-024-01660-y.
[92]

Xiong, Y. X.; Xiao, C.; Li, Z. F.; Yang, X. L. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev. 2021, 50, 6013–6041.

[93]

Niu, B. Y.; Liao, K. X.; Zhou, Y. X.; Wen, T.; Quan, G. L.; Pan, X.; Wu, C. B. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110.

[94]

Dong, X.; Mu, L. L.; Liu, X. L.; Zhu, H.; Yang, S. C.; Lai, X.; Liu, H. J.; Feng, H. Y.; Lu, Q.; Zhou, B. B. S. et al. Biomimetic, hypoxia-responsive nanoparticles overcome residual chemoresistant leukemic cells with co-targeting of therapy-induced bone marrow niches. Adv. Funct. Mater. 2020, 30, 2000309.

[95]

Feng, Q. H.; Hao, Y. T.; Yang, S. Q.; Yuan, X. M.; Chen, J.; Mei, Y. Y.; Liu, L. L.; Chang, J. B.; Zhang, Z. Z.; Wang, L. A metabolic intervention strategy to break evolutionary adaptability of tumor for reinforced immunotherapy. Acta Pharm. Sin. B 2023, 13, 775–786.

[96]

Rashkovan, M.; Ferrando, A. Metabolic dependencies and vulnerabilities in leukemia. Genes Dev. 2019, 33, 1460–1474.

[97]

De Beauchamp, L.; Himonas, E.; Helgason, G. V. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022, 36, 1–12.

[98]

Jones, C. L.; Inguva, A.; Jordan, C. T. Targeting energy metabolism in cancer stem cells: Progress and challenges in leukemia and solid tumors. Cell Stem Cell 2021, 28, 378–393.

[99]

Tcheng, M.; Roma, A.; Ahmed, N.; Smith, R. W.; Jayanth, P.; Minden, M. D.; Schimmer, A. D.; Hess, D. A.; Hope, K.; Rea, K. A. et al. Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 2021, 137, 3518–3532.

[100]

Husain, I.; Sharma, A.; Kumar, S.; Malik, F. Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: In-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS One 2016, 11, e0148877.

[101]

DeBerardinis, R. J. Tumor microenvironment, metabolism, and immunotherapy. N. Engl. J. Med. 2020, 382, 869–871.

[102]

Agrawal, S.; Kango, N. Development and catalytic characterization of L-asparaginase nano-bioconjugates. Int. J. Biol. Macromol. 2019, 135, 1142–1150.

[103]

Ung, J.; Tan, S. F.; Fox, T. E.; Shaw, J. J. P.; Vass, L. R.; Costa-Pinheiro, P.; Garrett-Bakelman, F. E.; Keng, M. K.; Sharma, A.; Claxton, D. F. et al. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev. 2022, 55, 100950.

[104]

Wang, W. Y.; Toran, P. T.; Sabol, R.; Brown, T. J.; Barth, B. M. Epigenetics and sphingolipid metabolism in health and disease. Int. J. Biopharm. Sci. 2018, 1, 105.

[105]

Leone, R. D.; Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 2020, 20, 516–531.

[106]

Li, Y. J.; Wu, Y. Z.; Hu, Y. Metabolites in the tumor microenvironment reprogram functions of immune effector cells through epigenetic modifications. Front. Immunol. 2021, 12, 641883.

[107]

Tsuchiya, H.; Shiota, G. Immune evasion by cancer stem cells. Regen. Ther. 2021, 17, 20–33.

[108]

Veglia, F.; Sanseviero, E.; Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021, 21, 485–498.

[109]

Grover, A.; Sanseviero, E.; Timosenko, E.; Gabrilovich, D. I. Myeloid-derived suppressor cells: A propitious road to clinic. Cancer Discov. 2021, 11, 2693–2706.

[110]

Sendker, S.; Reinhardt, D.; Niktoreh, N. Redirecting the immune microenvironment in acute myeloid leukemia. Cancers 2021, 13, 1423.

[111]

Lee, C. R.; Lee, W.; Cho, S. K.; Park, S. G. Characterization of multiple cytokine combinations and TGF-β on differentiation and functions of myeloid-derived suppressor cells. Int. J. Mol. Sci. 2018, 19, 869.

[112]

Haslauer, T.; Greil, R.; Zaborsky, N.; Geisberger, R. CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci. 2021, 22, 8996.

[113]

Vlachonikola, E.; Stamatopoulos, K.; Chatzidimitriou, A. T cells in chronic lymphocytic leukemia: A two-edged sword. Front. Immunol. 2021, 11, 612244.

[114]

Jiménez-Morales, S.; Aranda-Uribe, I. S.; Pérez-Amado, C. J.; Ramírez-Bello, J.; Hidalgo-Miranda, A. Mechanisms of Immunosuppressive tumor evasion: Focus on acute lymphoblastic leukemia. Front. Immunol. 2021, 12, 737340.

[115]

Ustun, C.; Miller, J. S.; Munn, D. H.; Weisdorf, D. J.; Blazar, B. R. Regulatory T cells in acute myelogenous leukemia: Is it time for immunomodulation. Blood 2011, 118, 5084–5095.

[116]

Alhallak, K.; Sun, J.; Wasden, K.; Guenthner, N.; O’Neal, J.; Muz, B.; King, J.; Kohnen, D.; Vij, R.; Achilefu, S. et al. Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia 2021, 35, 2346–2357.

[117]

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

[118]

Rovatti, P. E.; Gambacorta, V.; Lorentino, F.; Ciceri, F.; Vago, L. Mechanisms of leukemia immune evasion and their role in relapse after haploidentical hematopoietic cell transplantation. Front. Immunol. 2020, 11, 147.

[119]

Tettamanti, S.; Pievani, A.; Biondi, A.; Dotti, G.; Serafini, M. Catch me if you can: How AML and its niche escape immunotherapy. Leukemia 2022, 36, 13–22.

[120]

Taghiloo, S.; Asgarian-Omran, H. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Crit. Rev. Oncol. Hematol. 2021, 157, 103164.

[121]

Pastorczak, A.; Domka, K.; Fidyt, K.; Poprzeczko, M.; Firczuk, M. Mechanisms of immune evasion in acute lymphoblastic leukemia. Cancers 2021, 13, 1536.

[122]

Wang, Z. N.; Li, B. H.; Li, S.; Lin, W. L.; Wang, Z.; Wang, S. D.; Chen, W. D.; Shi, W.; Chen, T.; Zhou, H. et al. Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion. Nat. Commun. 2022, 13, 6308.

Nano Research
Pages 8285-8300
Cite this article:
Zhang H, Liu T, Liu M, et al. Advanced nanotherapeutics inspired by the abnormal microenvironment of leukemia. Nano Research, 2024, 17(9): 8285-8300. https://doi.org/10.1007/s12274-024-6838-4
Topics:

449

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 May 2024
Revised: 18 June 2024
Accepted: 24 June 2024
Published: 17 July 2024
© Tsinghua University Press 2024
Return