AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Structurally altered size, composition, shape and interface-dependent optical properties of quantized nanomaterials

Neng QinHui HanGuijian Guan( )Ming-Yong Han( )
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

Through top-down or bottom-up strategies, a great variety of quantum dots (QDs) are facilely synthesized and are classified as semiconductor QDs, carbon QDs, perovskite QDs, and metal QDs (i.e., metal nanoclusters). These QDs exhibit structurally altered, size, composition, shape, and interface-dependent optical properties, offering the effective methods to readily achieve greatly improved performances such as wide absorption, tunable emission, high quantum yield, and long fluorescence lifetime.

Abstract

The impact of the size effect on the color and photoluminescence (PL) of quantum dots (QDs) has sparked a revolutionary field of research, culminating in the prestigious Nobel Prize in 2023. Prior to their widespread popularization and large-scale commercialization, it is of paramount importance to effectively manipulate and optimize their optical properties. In this review, we place specific emphasis on the striking correlation between the optical characteristics of QDs and their size, structure, composition, and interface environment. We commence by tracing the evolution of quantum dot technology and subsequently categorizing QDs while outlining their typical synthesis methods. This is followed by a deep dive into the pivotal roles of size, composition, structure, and interfacial ligands in fine-tuning, optimizing, and enhancing the optical properties of QDs. Additionally, we illustrate the luminescence enhancement and charge transfer phenomena stemming from the heterojunction between semiconductor QDs and metal nanomaterials, which contribute to improved performance. Lastly, we introduce the burgeoning field of chiral QDs and their innovative applications. Armed with this knowledge, QDs can be readily tailored to exhibit adjustable luminous characteristics across the entire spectrum, boasting high luminous efficiency through multifaceted regulation. These advancements render QDs even more enticing and promising for a wide array of applications.

References

[1]

Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.

[2]

Li, J. Q.; Fan, Y. H.; Xuan, T. T.; Zhang, H. R.; Li, W.; Hu, C. F.; Zhuang, J. L.; Liu, R. S.; Lei, B. F.; Liu, Y. L. et al. In situ growth of high-quality CsPbBr3 quantum dots with unusual morphology inside a transparent glass with a heterogeneous crystallization environment for wide gamut displays. ACS Appl. Mater. Interfaces 2022, 14, 30029–30038.

[3]

Kumar, S.; Bharti, P.; Pradhan, B. Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. 2023, 13, 10511.

[4]

Westmoreland, D. E.; López-Arteaga, R.; Kantt, L. P.; Wasielewski, M. R.; Weiss, E. A. Dynamic tuning of the bandgap of CdSe quantum dots through redox-active exciton-delocalizing N-heterocyclic carbene ligands. J. Am. Chem. Soc. 2022, 144, 4300–4304.

[5]

Lan, X. Z.; Chen, M. L.; Hudson, M. H.; Kamysbayev, V.; Wang, Y. Y.; Guyot-Sionnest, P.; Talapin, D. V. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 2020, 19, 323–329.

[6]

Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.

[7]

Juang, R. S.; Hsieh, C. T.; Kao, C. P.; Gandomi, Y. A.; Fu, C. C.; Liu, S. H.; Gu, S. Y. Highly fluorescent green and red emissions from boron-doped graphene quantum dots under blue light illumination. Carbon 2021, 176, 61–70.

[8]

Ravi, V. K.; Saikia, S.; Yadav, S.; Nawale, V. V.; Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 2020, 5, 1794–1796.

[9]

Shi, J. W.; Li, F. C.; Jin, Y.; Liu, C.; Cohen-Kleinstein, B.; Yuan, S.; Li, Y. Y.; Wang, Z. K.; Yuan, J.; Ma, W. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem., Int. Ed. 2020, 59, 22230–22237.

[10]

Ru, Y.; Sui, L. Z.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

[11]

Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light: Sci. Appl. 2022, 11, 75.

[12]

Yang, Y. Z.; Wang, Q.; Li, G. J.; Guo, W. J.; Yang, Z. J.; Liu, H.; Deng, X. Y. Cysteine-derived chiral carbon quantum dots: A fibrinolytic activity regulator for plasmin to target the human islet amyloid polypeptide for type 2 diabetes mellitus. ACS Appl. Mater. Interfaces 2023, 15, 2617–2629.

[13]

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. Jetp Lett. 2023, 118, S15–S17.

[14]

Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 1982, 86, 4470–4472.

[15]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[16]

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[17]

Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

[18]

Reed, M. A.; Bate, R. T.; Bradshaw, K.; Duncan, W. M.; Frensley, W. R.; Lee, J. W.; Shih, H. D. Spatial quantization in GaAs-AlGaAs multiple quantum dots. J. Vac. Sci. Technol. B 1986, 4, 358–360.

[19]

Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 1990, 112, 1327–1332.

[20]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[21]

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

[22]

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

[23]

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

[24]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[25]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[26]

Hulkko, E.; Lopez-Acevedo, O.; Koivisto, J.; Levi-Kalisman, Y.; Kornberg, R. D.; Pettersson, M.; Häkkinen, H. Electronic and vibrational signatures of the Au102(p-MBA)44 cluster. J. Am. Chem. Soc. 2011, 133, 3752–3755.

[27]

Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

[28]

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

[29]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[30]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[31]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[32]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[33]

Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

[34]

Kim, M.; Jeong, J.; Lu, H. Z.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y. H.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. B. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306.

[35]

Qi, H.; Wang, S. J.; Jiang, X. H.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Research progress and challenges of blue light-emitting diodes based on II-VI semiconductor quantum dots. J. Mater. Chem. C 2020, 8, 10160–10173.

[36]

Kim, T.; Shin, D.; Kim, M.; Kim, H.; Cho, E.; Choi, M.; Kim, J.; Jang, E.; Jeong, S. Development of group III-V colloidal quantum dots for optoelectronic applications. ACS Energy Lett. 2023, 8, 447–456.

[37]

Torimoto, T.; Kameyama, T.; Uematsu, T.; Kuwabata, S. Controlling optical properties and electronic energy structure of I-III-VI semiconductor quantum dots for improving their photofunctions. J. Photochem. Photobiol. C: Photochem. Rev. 2023, 54, 100569.

[38]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[39]

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

[40]

Van Avermaet, H.; Schiettecatte, P.; Hinz, S.; Giordano, L.; Ferrari, F.; Nayral, C.; Delpech, F.; Maultzsch, J.; Lange, H.; Hens, Z. Full-spectrum InP-based quantum dots with near-unity photoluminescence quantum efficiency. ACS Nano 2022, 16, 9701–9712.

[41]

Etgar, L.; Park, J.; Barolo, C.; Lesnyak, V.; Panda, S. K.; Quagliotto, P.; Hickey, S. G.; Nazeeruddin, M. K.; Eychmüller, A.; Viscardi, G. et al. Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Adv. 2012, 2, 2748–2752.

[42]

Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017, 87, 209–222.

[43]

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

[44]

Berkinsky, D. B.; Proppe, A. H.; Utzat, H.; Krajewska, C. J.; Sun, W. W.; Šverko, T.; Yoo, J. J.; Chung, H.; Won, Y. H.; Kim, T. et al. Narrow intrinsic line widths and electron-phonon coupling of InP colloidal quantum dots. ACS Nano 2023, 17, 3598–3609.

[45]

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

[46]

Khan, F.; Kim, J. H. Emission-wavelength-dependent photoluminescence decay lifetime of N-functionalized graphene quantum dot downconverters: Impact on conversion efficiency of Cu(In, Ga)Se2 solar cells. Sci. Rep. 2019, 9, 10803.

[47]

Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.

[48]

Maysinger, D.; Ji, J.; Hutter, E.; Cooper, E. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front. Neurosci. 2015, 9, 480.

[49]

Deng, B.; Zhu, Y. Q.; Li, J. L.; Chen, X.; He, K.; Yang, J.; Qin, K. L.; Bi, Z. N.; Xiao, X. D.; Chen, S. J. et al. Low temperature synthesis of highly bright green emission CuInS2/ZnS quantum dots and its application in light-emitting diodes. J. Alloys. Compd. 2021, 851, 155439.

[50]

Yang, J.; Ling, T.; Wu, W. T.; Liu, H.; Gao, M. R.; Ling, C.; Li, L.; Du, X. W. A top-down strategy towards monodisperse colloidal lead sulphide quantum dots. Nat. Commun. 2013, 4, 1695.

[51]

Sun, J.; Yang, J.; Lee, J. I.; Cho, J. H.; Kang, M. S. Lead-free perovskite nanocrystals for light-emitting devices. J. Phys. Chem. Lett. 2018, 9, 1573–1583.

[52]

Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 2020, 11, 3902.

[53]

Subramaniam, M. R.; Pramod, A. K.; Hevia, S. A.; Batabyal, S. K. Enhanced photoluminescence quantum yield, lifetime, and photodetector responsivity of CsPbBr3 quantum dots via antimony tribromide post-treatment. J. Phys. Chem. C 2022, 126, 1462–1470.

[54]

Protesescu, L.; Yakunin, S.; Nazarenko, O.; Dirin, D. N.; Kovalenko, M. V. Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 2018, 1, 1300–1308.

[55]

Wang, C.; Fang, Y.; Zhang, M.; Zhuo, H.; Song, Q. J.; Zhu, H. Surface-state controlled synthesis of hydrophobic and hydrophilic carbon dots. Nano Res. 2024, 17, 4391–4399.

[56]

Huang, H. G.; Yang, S. W.; Li, Q. T.; Yang, Y. C.; Wang, G.; You, X. F.; Mao, B. H.; Wang, H. S.; Ma, Y.; He, P. et al. Electrochemical cutting in weak aqueous electrolytes: The strategy for efficient and controllable preparation of graphene quantum dots. Langmuir 2018, 34, 250–258.

[57]

Guan, G. J.; Low, M.; Liu, S. H.; Cai, Y. Q.; Zhang, S. Y.; Geng, D. S.; Liu, C.; Zhang, Z. P.; Cheng, Y.; Bharathi, M. S. et al. Destabilization of thiolated gold clusters for the growth of single-crystalline gold nanoparticles and their self-assembly for SERS detection. Part. Part. Syst. Charact. 2015, 32, 588–595.

[58]

Hada, A. M.; Craciun, A. M.; Focsan, M.; Vulpoi, A.; Borcan, E. L.; Astilean, S. Glutathione-capped gold nanoclusters as near-infrared-emitting efficient contrast agents for confocal fluorescence imaging of tissue-mimicking phantoms. Microchim. Acta 2022, 189, 337.

[59]

Lu, F. N.; Yang, H. W.; Yuan, Z. Q.; Nakanishi, T.; Lu, C.; He, Y. Highly fluorescent polyethyleneimine protected Au8 nanoclusters: One-pot synthesis and application in hemoglobin detection. Sens. Actuators B: Chem. 2019, 291, 170–176.

[60]

Maity, S.; Bain, D.; Patra, A. Engineering atomically precise copper nanoclusters with aggregation induced emission. J. Phys. Chem. C 2019, 123, 2506–2515.

[61]

Guo, W. W.; Yuan, J. P.; Wang, E. Organic-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange induced etching of gold nanoparticles and their electrochemiluminescence. Chem. Commun. 2012, 48, 3076–3078.

[62]

Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T. Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: Metal ion sensing, metal-enhanced luminescence, and biolabeling. Chem.—Eur. J. 2010, 16, 10103–10112.

[63]

Subila, K. B.; Kumar, G. K.; Shivaprasad, S. M.; Thomas, K. G. Luminescence properties of CdSe quantum dots: Role of crystal structure and surface composition. J. Phys. Chem. Lett. 2013, 4, 2774–2779.

[64]

Gao, Y.; Peng, X. G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732.

[65]

Califano, M.; Franceschetti, A.; Zunger, A. Temperature dependence of excitonic radiative decay in CdSe quantum dots: The role of surface hole traps. Nano Lett. 2005, 5, 2360–2364.

[66]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[67]

Kays, J. C.; Saeboe, A. M.; Toufanian, R.; Kurant, D. E.; Dennis, A. M. Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo. Nano Lett. 2020, 20, 1980–1991.

[68]

Zi, J. Z.; Zhong, Y. Q.; Li, Z.; Wu, F.; Yang, W. W.; Lian, Z. C. Type-I CdSe/ZnS heteronanoplatelets exhibit enhanced photocatalytic hydrogen evolution by interfacial trap-mediated hole transfer. J. Phys. Chem. C 2021, 125, 23945–23951.

[69]

Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

[70]

Lien, V. T. K.; Tan, P. M.; Hien, N. T.; Hoa, V. X.; Chi, T. T. K.; Truong, N. X.; Oanh, V. T. K.; Thuy, N. T. M.; Ca, N. X. Tunable photoluminescent Cu-doped CdS/ZnSe type-II core/shell quantum dots. J. Lumin. 2019, 215, 116627.

[71]

Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

[72]

Handique, K. C.; Kalita, P. K.; Barman, B.; Das, H. Photo-induced single-electron tunnelling based Coulomb staircase effect observed at high applied bias in ZnSe/CdSe core–shell quantum dots. Opt. Quantum Electron. 2024, 56, 357.

[73]

Lin, H. J.; Li, S. Y.; Zhang, Y. C.; Chu, C.; MacSwain, W.; Meulenberg, R. W.; Qiao, Q.; Zhao, D.; Zheng, W. W. Epitaxial growth of lead-free double perovskite shell for CsPbX3/Cs2SnX6 (X = Cl, Br, and I) core/shell perovskite nanocrystals with enhanced photoelectric properties and stability. Adv. Funct. Mater. 2024, 34, 2309480.

[74]

Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

[75]

Kwon, H. G.; Lee, T.; Kim, K.; Kim, D. H.; Seo, H.; Kwon, O. P.; Kwak, J.; Kim, S. W. Enhanced stability and highly bright electroluminescence of AgInZnS/CdS/ZnS quantum dots through complete isolation of core and shell via a CdS interlayer. Small 2024, 20, 2304592.

[76]

Pun, A. B.; Mule, A. S.; Held, J. T.; Norris, D. J. Core/shell magic-sized CdSe nanocrystals. Nano Lett. 2021, 21, 7651–7658.

[77]

Sung, Y. M.; Kim, T. G.; Yun, D. J.; Lim, M.; Ko, D. S.; Jung, C.; Won, N.; Park, S.; Jeon, W. S.; Lee, H. S. et al. Increasing the energy gap between band-edge and trap states slows down picosecond carrier trapping in highly luminescent InP/ZnSe/ZnS quantum dots. Small 2021, 17, 2102792.

[78]

Zhang, H.; Besteiro, L. V.; Liu, J. B.; Wang, C.; Selopal, G. S.; Chen, Z. S.; Barba, D.; Wang, Z. M.; Zhao, H. G.; Lopinski, G. P. et al. Efficient and stable photoelectrochemical hydrogen generation using optimized colloidal heterostructured quantum dots. Nano Energy 2021, 79, 105416.

[79]

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

[80]

Vezzoli, S.; Manceau, M.; Leménager, G.; Glorieux, Q.; Giacobino, E.; Carbone, L.; de Vittorio, M. D.; Bramati, A. Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature. ACS Nano 2015, 9, 7992–8003.

[81]

Kim, D.; Shcherbakov-Wu, W.; Ha, S. K.; Lee, W. S.; Tisdale, W. A. Uniaxial strain engineering via core position control in CdSe/CdS core/shell nanorods and their optical response. ACS Nano 2022, 16, 14713–14722.

[82]

Qin, H. Y.; Meng, R. Y.; Wang, N.; Peng, X. G. Photoluminescence intermittency and photo-bleaching of single colloidal quantum dot. Adv. Mater. 2017, 29, 1606923.

[83]

Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

[84]

Tao, C. L.; Ma, J. L.; Wei, C. T.; Xu, D.; Xie, Z. Y.; Jiang, Z. F.; Ge, F. Y.; Zhang, H.; Xie, M. C.; Ye, Z. L. et al. Scalable synthesis of high-quality core/shell quantum dots with suppressed blinking. Adv. Opt. Mater. 2023, 11, 2300533.

[85]

Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z. H.; Wang, S. X.; Wei, S. Q.; Zhu, M. Z. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685–8693.

[86]

Zhuang, S. L.; Liao, L. W.; Yuan, J. Y.; Xia, N.; Zhao, Y.; Wang, C. M.; Gan, Z. B.; Yan, N.; He, L. Z.; Li, J. et al. Fcc versus non-Fcc structural isomerism of gold nanoparticles with kernel atom packing dependent photoluminescence. Angew. Chem., Int. Ed. 2019, 58, 4510–4514.

[87]

Zhou, M.; Tian, S. B.; Zeng, C. J.; Sfeir, M. Y.; Wu, Z. K.; Jin, R. C. Ultrafast relaxation dynamics of Au38(SC2H4Ph)24 nanoclusters and effects of structural isomerism. J. Phys. Chem. C 2017, 121, 10686–10693.

[88]

Busatto, S.; de Mello Donega, C. Magic-size semiconductor nanostructures: Where does the magic come from. ACS Mater. Au 2022, 2, 237–249.

[89]

Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J. K.; Prasad, S. K. K.; Metin, D. Z.; Laufersky, G.; Gaston, N.; Halpert, J. E.; Hodgkiss, J. M. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 2017, 29, 3644–3652.

[90]

Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

[91]

Almeida, G.; van der Poll, L.; Evers, W. H.; Szoboszlai, E.; Vonk, S. J. W.; Rabouw, F. T.; Houtepen, A. J. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett. 2023, 23, 8697–8703.

[92]

Cheng, O. H. C.; Qiao, T.; Sheldon, M.; Son, D. H. Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr3 quantum dots. Nanoscale 2020, 12, 13113–13118.

[93]

Mule, A. S.; Mazzotti, S.; Rossinelli, A. A.; Aellen, M.; Prins, P. T.; van der Bok, J. C.; Solari, S. F.; Glauser, Y. M.; Kumar, P. V.; Riedinger, A. et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 2021, 143, 2037–2048.

[94]

Yoon, S. Y.; Han, J. N.; Lee, Y. J.; Channa, A. I.; Jo, D. Y.; Kim, H. M.; Kim, Y.; Park, S. M.; Park, S.; Kim, Y. H. et al. Highly emissive green ZnSeTe quantum dots: Effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett. 2023, 8, 1131–1140.

[95]

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

[96]

Zhang, J. M.; Zhang, X. K.; Zhang, J. Y. Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals. J. Phys. Chem. C 2009, 113, 9512–9515.

[97]

Yin, Q. Y.; Zhang, W. C.; Zhou, Y.; Wang, R. Z.; Zhao, Z. Y.; Liu, C. High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes. J. Lumin. 2022, 250, 119065.

[98]

Li, Y. L.; Luo, X.; Ding, T.; Lu, X.; Wu, K. F. Size- and halide-dependent auger recombination in lead halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 14292–14295.

[99]

Kim, S. H.; Shin, T.; Man, M. T.; Lee, H. S. Size-dependent energy spacing and surface defects of CdSe quantum dots in strong confinement regime. Appl. Nanosci. 2022, 12, 3297–3302.

[100]

de Mello Donegá, C.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.

[101]

Ushakova, E. V.; Litvin, A. P.; Parfenov, P. S.; Fedorov, A. V.; Artemyev, M.; Prudnikau, A. V.; Rukhlenko, I. D.; Baranov, A. V. Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution. ACS Nano 2012, 6, 8913–8921.

[102]

Cheng, C.; Li, J. J.; Cheng, X. Y. Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots. J. Lumin. 2017, 188, 252–257.

[103]

Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

[104]

Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B 2002, 106, 3410–3415.

[105]

Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402.

[106]

Wu, H.; Cheng, X. Y.; Dong, H. G.; Xie, S. J.; He, S. L. Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence. Nano Res. 2022, 15, 838–844.

[107]

Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M. A.; Rivas, J. Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009, 25, 8208–8216.

[108]

Stamplecoskie, K. G.; Kamat, P. V. Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J. Am. Chem. Soc. 2014, 136, 11093–11099.

[109]

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

[110]

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

[111]

Jian, J. X.; Sun, J. W. A review of recent progress on silicon carbide for photoelectrochemical water splitting. Sol. RRL 2020, 4, 2000111.

[112]

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

[113]

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “Golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

[114]

Bailey, R. E.; Nie, S. M. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125, 7100–7106.

[115]

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

[116]

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

[117]

Yuan, Y. C.; Zhu, H.; Wang, X. D.; Cui, D. Z.; Gao, Z. H.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643.

[118]

Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable Zn x Cd1– x Se nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.

[119]

Srivastava, V.; Kamysbayev, V.; Hong, L.; Dunietz, E.; Klie, R. F.; Talapin, D. V. Colloidal chemistry in molten salts: Synthesis of luminescent In1– x Ga x P and In1– x Ga x As quantum dots. J. Am. Chem. Soc. 2018, 140, 12144–12151.

[120]

Ca, N. X.; Hien, N. T.; Do, P. V.; Yen, V. H.; Cuong, K. C.; Thu, P. N.; Lam, L. T.; Dung, L. N.; Quynh, L. K.; Hao, P. V. Controlling the optical and magnetic properties of CdTeSe and Gd-doped CdTeSe alloy semiconductor nanocrystals. RSC Adv. 2023, 13, 36455–36466.

[121]

Zhang, L. W.; Zhou, H.; Chen, Y. B.; Zheng, Z. M.; Huang, L. S.; Wang, C.; Dong, K. L.; Hu, Z. Q.; Ke, W. J.; Fang, G. J. Spontaneous crystallization of strongly confined CsSn x Pb1- x I3 perovskite colloidal quantum dots at room temperature. Nat. Commun. 2024, 15, 1609.

[122]

Shi, W. Q.; Zeng, L. L.; He, R. L.; Han, X. S.; Guan, Z. J.; Zhou, M.; Wang, Q. M. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 2024, 383, 326–330.

[123]

Zhu, C.; Xin, J. S.; Li, J.; Li, H.; Kang, X.; Pei, Y.; Zhu, M. Z. Fluorescence or phosphorescence? The metallic composition of the nanocluster kernel does matter. Angew Chem., Int. Ed. 2022, 61, e202205947.

[124]

Zunger, A.; Malyi, O. I. Understanding doping of quantum materials. Chem. Rev. 2021, 121, 3031–3060.

[125]

Mordvinova, N. E.; Vinokurov, A. A.; Lebedev, O. I.; Kuznetsova, T. A.; Dorofeev, S. G. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: Doping and surface passivation. Beilstein J. Nanotechnol. 2015, 6, 1237–1246.

[126]

Asor, L.; Liu, J.; Xiang, S. T.; Tessler, N.; Frenkel, A. I.; Banin, U. Zn-doped P-type InAs nanocrystal quantum dots. Adv. Mater. 2023, 35, 2208332.

[127]

Pradhan, N.; Peng, X. G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347.

[128]

Santiago-González, B.; Monguzzi, A.; Pinchetti, V.; Casu, A.; Prato, M.; Lorenzi, R.; Campione, M.; Chiodini, N.; Santambrogio, C.; Meinardi, F. et al. “Quantized” doping of individual colloidal nanocrystals using size-focused metal quantum clusters. ACS Nano 2017, 11, 6233–6242.

[129]

Harchol, A.; Barak, Y.; Hughes, K. E.; Hartstein, K. H.; Jöbsis, H. J.; Prins, P. T.; de Mello Donegá, C.; Gamelin, D. R.; Lifshitz, E. Optically detected magnetic resonance spectroscopy of Cu-doped CdSe/CdS and CuInS2 colloidal quantum dots. ACS Nano 2022, 16, 12866–12877.

[130]

Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 7038–7054.

[131]

Song, S. W.; Lee, S. H.; Jo, D. Y.; Yoon, S. Y.; Kim, H. M.; Kim, Y.; Han, J. N.; Lee, Y. J.; Do, Y. R.; Yang, H. Single and dual doping of blue-emissive ZnSeTe quantum dots with transition metal ions. Adv. Opt. Mater. 2022, 10, 2101767.

[132]

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

[133]

Shi, J. X.; Lu, C.; Yan, D.; Ma, L. N. High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens. Bioelectron. 2013, 45, 58–64.

[134]

John, V. L.; Nair, Y.; Vinod, T. P. Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications. Part. Part. Syst. Charact. 2021, 38, 2100170.

[135]

Yi, Z. H.; Li, X. M.; Zhang, H. Y.; Ji, X. L.; Sun, W.; Yu, Y. X.; Liu, Y. N.; Huang, J. X.; Sarshar, Z.; Sain, M. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta 2021, 222, 121663.

[136]

Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

[137]

Li, H. B.; Liu, X. D.; Ying, Q. F.; Wang, C.; Jia, W.; Xing, X.; Yin, L. S.; Lu, Z. D.; Zhang, K.; Pan, Y. et al. Self-assembly of perovskite CsPbBr3 quantum dots driven by a photo-induced alkynyl homocoupling reaction. Angew. Chem., Int. Ed. 2020, 59, 17207–17213.

[138]

Kennehan, E. R.; Munson, K. T.; Grieco, C.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Influence of ligand structure on excited state surface chemistry of lead sulfide quantum dots. J. Am. Chem. Soc. 2021, 143, 13824–13834.

[139]

Lawrence, K. N.; Dutta, P.; Nagaraju, M.; Teunis, M. B.; Muhoberac, B. B.; Sardar, R. Dual role of electron-accepting metal-carboxylate ligands: Reversible expansion of exciton delocalization and passivation of nonradiative trap-states in molecule-like CdSe nanocrystals. J. Am. Chem. Soc. 2016, 138, 12813–12825.

[140]

Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

[141]

Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.

[142]

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

[143]

van der Stam, W.; Grimaldi, G.; Geuchies, J. J.; Gudjonsdottir, S.; van Uffelen, P. T.; van Overeem, M.; Brynjarsson, B.; Kirkwood, N.; Houtepen, A. J. Electrochemical modulation of the photophysics of surface-localized trap states in core/shell/(shell) quantum dot films. Chem. Mater. 2019, 31, 8484–8493.

[144]

Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.

[145]

Green, M. L. H. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 1995, 500, 127–148.

[146]

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

[147]

Mir, W. J.; Alamoudi, A.; Yin, J.; Yorov, K. E.; Maity, P.; Naphade, R.; Shao, B. Y.; Wang, J. Y.; Lintangpradipto, M. N.; Nematulloev, S. et al. Lecithin capping ligands enable ultrastable perovskite-phase CsPbI3 quantum dots for rec. 2020 bright-red light-emitting diodes. J. Am. Chem. Soc. 2022, 144, 13302–13310

[148]

Chen, D. Z.; Ko, P. K.; Li, C. H. A.; Zou, B. S.; Geng, P.; Guo, L.; Halpert, J. E. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 2023, 8, 410–416.

[149]

Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; du Fossé, I.; van der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II-VI and III-V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.

[150]

Ubbink, R. F.; Almeida, G.; Iziyi, H.; du Fossé, I.; Verkleij, R.; Ganapathy, S.; van Eck, E. R. H. V.; Houtepen, A. J. A water-free in situ HF treatment for ultrabright InP quantum dots. Chem. Mater. 2022, 34, 10093–10103.

[151]

Lin, Y. Y.; Charchar, P.; Christofferson, A. J.; Thomas, M. R.; Todorova, N.; Mazo, M. M.; Chen, Q.; Doutch, J.; Richardson, R.; Yarovsky, I. et al. Surface dynamics and ligand-core interactions of quantum sized photoluminescent gold nanoclusters. J. Am. Chem. Soc. 2018, 140, 18217–18226.

[152]

Wang, Z. X.; Gao, H.; Li, X. Q.; Jia, Y. L.; Wang, T.; Cheng, Q. Y.; Kang, B.; Chen, H. Y.; Xu, J. J. Interface engineering of copper nanocluster assemblies with white-light emission. Adv. Funct. Mater. 2023, 33, 2305209.

[153]

Zhong, Y.; Zhang, J. W.; Li, T. T.; Xu, W. W.; Yao, Q. F.; Lu, M.; Bai, X.; Wu, Z. N.; Xie, J. P.; Zhang, Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat. Commun. 2023, 14, 658.

[154]

Wang, Y. T.; Liu, Z. Y.; Mazumder, A.; Gianopoulos, C. G.; Kirschbaum, K.; Peteanu, L. A.; Jin, R. C. Tailoring carbon tails of ligands on Au52(SR)32 nanoclusters enhances the near-infrared photoluminescence quantum yield from 3.8% to 18.3%. J. Am. Chem. Soc. 2023, 145, 26328–26338.

[155]

Kundu, S.; Ghosh, B.; Nandi, S.; Ghosh, M.; Pyne, A.; Chatterjee, J.; Sarkar, N. Surface ligand-controlled wavelength-tunable luminescence of gold nanoclusters: Cellular imaging and smart fluorescent probes for amyloid detection. ACS Appl. Bio Mater. 2020, 3, 4282–4293.

[156]

Gao, H. M.; Qin, Z. J.; Wang, Y. H.; Xiong, H. J.; Wang, X. M.; Jiang, H. Hydrophilic cyclodextrin derivative directed lateral recombination of 1-D dipeptide protected gold nanoclusters assembly for lysosomal localization. ACS Mater. Lett. 2022, 4, 2244–2251.

[157]

Wu, Z. N.; Du, Y. H.; Liu, J. L.; Yao, Q. F.; Chen, T. K.; Cao, Y. T.; Zhang, H.; Xie, J. P. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139–8144.

[158]

Huang, R. W.; Song, X.; Chen, S. L.; Yin, J.; Maity, P.; Wang, J. Y.; Shao, B. Y.; Zhu, H. W.; Dong, C. W.; Yuan, P. et al. Radioluminescent Cu–Au metal nanoclusters: Synthesis and self-assembly for efficient X-ray scintillation and imaging. J. Am. Chem. Soc. 2023, 145, 13816–13827.

[159]

Shi, L.; Zhu, L. Y.; Guo, J.; Zhang, L. J.; Shi, Y. N.; Zhang, Y.; Hou, K.; Zheng, Y. L.; Zhu, Y. F.; Lv, J. W. et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem., Int. Ed. 2017, 56, 15397–15401.

[160]

Kong, Y. J.; Yan, Z. P.; Li, S.; Su, H. F.; Li, K.; Zheng, Y. X.; Zang, S. Q. Photoresponsive propeller-like chiral AIE copper(I) clusters. Angew. Chem., Int. Ed. 2020, 59, 5336–5340.

[161]

Achermann, M. Exciton-plasmon interactions in metal-semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.

[162]

Yuan, K.; Qin, R. H.; Yu, J. J.; Li, X.; Li, L. L.; Yang, X. J.; Yu, X. F.; Lu, Z. M.; Zhang, X. H.; Liu, H. Effects of localized surface plasmon resonance of Ag nanoparticles on luminescence of carbon dots with blue, green and yellow emission. Appl. Surf. Sci. 2020, 502, 144277.

[163]

Kim, H.; Heo, N.; Kim, B.; Yoon, S.; Jae Cho, Y.; Choi, J.; Lee, K. T.; Park, S.; Bin Kim, D.; Kim, Y. et al. Synthetic hybrid particles to improve the down-conversion efficiency of quantum dots via simultaneously induced scattering and plasmonic effects. Chem. Eng. J. 2022, 450, 138270.

[164]

Kosger, A. C.; Ghobadi, A.; Omam, Z. R.; Soydan, M. C.; Ghobadi, T. G. U.; Ozbay, E. Disordered plasmonic nanocavity enhanced quantum dot emission. J. Phys. D: Appl. Phys. 2023, 56, 475107.

[165]

Trotsiuk, L.; Muravitskaya, A.; Movsesyan, A.; Ramanenka, A.; Prudnikau, A.; Antanovich, A.; Lesnyak, V.; Gaponenko, S. V.; Govorov, A. O. Nonclassical mechanism of metal-enhanced photoluminescence of quantum dots. Nano Lett. 2023, 23, 8524–8531.

[166]

Okuhata, T.; Katayama, T.; Tamai, N. Ultrafast and hot electron transfer in CdSe QD-Au hybrid nanostructures. J. Phys. Chem. C 2020, 124, 1099–1107.

[167]

Jin, N.; Sun, Y. L.; Shi, W. W.; Wang, P.; Nagaoka, Y.; Cai, T.; Wu, R. Z.; Dube, L.; Nyiera, H. N.; Liu, Y. Z. et al. Type-I CdS/ZnS core/shell quantum dot-gold heterostructural nanocrystals for enhanced photocatalytic hydrogen generation. J. Am. Chem. Soc. 2023, 145, 21886–21896.

[168]

Hou, S.; Huang, M. H.; Xiao, F. X. Stabilizing atomically precise metal nanoclusters as simultaneous charge relay mediators and photosensitizers. J. Mater. Chem. A 2022, 10, 7006–7012.

[169]

Zhang, N. N.; Wu, X.; Lv, K. J.; Chu, Y. J.; Wang, G.; Zhang, D. D. Synthesis and highly efficient photocatalysis applications of CdS QDs and Au NPs Co-modified KTaO3 perovskite cubes. Phys. Chem. Chem. Phys. 2023, 25, 14028–14037.

[170]

Liu, N. W.; Wang, Y. C.; Wang, Z. P.; He, Q. X.; Liu, Y.; Dou, X. Y.; Yin, Z. M.; Li, Y.; Zhu, H. G.; Yuan, X. Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity. Nanoscale 2022, 14, 8183–8191.

[171]

Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950.

[172]

Xu, J.; Pan, Y. T.; Wei, Z. R.; Luo, S. D.; Ran, X.; He, Y. L.; Liu, R. M.; Chi, Z.; Guo, L. J. Efficient charge separation and enhanced photocurrent of CdTe quantum dots-Au nanoclusters composite with type-II band alignment. Appl. Phys. Lett. 2022, 120, 143902.

[173]

Wang, P. P.; Yu, S. J.; Govorov, A. O.; Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 2017, 8, 14312.

[174]

Li, G. M.; Fei, X. N.; Liu, H. F.; Gao, J.; Nie, J. Y.; Wang, Y. B.; Tian, Z. D.; He, C. C.; Wang, J. L.; Ji, C. et al. Fluorescence and optical activity of chiral CdTe quantum dots in their interaction with amino acids. ACS Nano 2020, 14, 4196–4205.

[175]

Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A. O.; Purcell-Milton, F.; Govan, J.; Gun’ko, Y. K. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015, 15, 2844–2851.

[176]

Ben-Moshe, A.; Teitelboim, A.; Oron, D.; Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 2016, 16, 7467–7473.

[177]

Suzuki, N.; Wang, Y. C.; Elvati, P.; Qu, Z. B.; Kim, K.; Jiang, S.; Baumeister, E.; Lee, J.; Yeom, B.; Bahng, J. H. et al. Chiral graphene quantum dots. ACS Nano 2016, 10, 1744–1755.

[178]

Varga, K.; Tannir, S.; Haynie, B. E.; Leonard, B. M.; Dzyuba, S. V.; Kubelka, J.; Balaz, M. CdSe quantum dots functionalized with chiral, thiol-free carboxylic Acids: Unraveling structural requirements for ligand-induced chirality. ACS Nano 2017, 11, 9846–9853.

[179]

Ye, C. Y.; Jiang, J. W.; Zou, S. L.; Mi, W. B.; Xiao, Y. Core–shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc. 2022, 144, 9707–9714.

[180]

Lu, J. X.; Shao, B. Y.; Huang, R. W.; Gutiérrez-Arzaluz, L.; Chen, S. L.; Han, Z.; Yin, J.; Zhu, H. W.; Dayneko, S.; Hedhili, M. N. et al. High-efficiency circularly polarized light-emitting diodes based on chiral metal nanoclusters. J. Am. Chem. Soc. 2024, 146, 4144–4152.

[181]

Huo, S. W.; Duan, P. F.; Jiao, T. F.; Peng, Q. M.; Liu, M. H. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem., Int. Ed. 2017, 56, 12174–12178.

[182]

Cai, J. R.; Liu, A. A.; Shi, X. H.; Fu, H. H.; Zhao, W.; Xu, L. G.; Kuang, H.; Xu, C. L.; Pang, D. W. Enhancing circularly polarized luminescence in quantum dots through chiral coordination-mediated growth at the liquid/liquid interface. J. Am. Chem. Soc. 2023, 145, 24375–24385.

[183]

Copur, F.; Bekar, N.; Zor, E.; Alpaydin, S.; Bingol, H. Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots. Sens. Actuators B: Chem. 2019, 279, 305–312.

[184]

Zhu, F. W.; Wang, J.; Xie, S. Q.; Zhu, Y. Q.; Wang, L. M.; Xu, J. J.; Liao, S.; Ren, J. W.; Liu, Q.; Yang, H. et al. L-pyroglutamic acid-modified CdSe/ZnS quantum dots: A new fluorescence-responsive chiral sensing platform for stereospecific molecular recognition. Anal. Chem. 2020, 92, 12040–12048.

[185]

Ngamdee, K.; Ngeontae, W. Circular dichroism glucose biosensor based on chiral cadmium sulfide quantum dots. Sens. Actuators B: Chem. 2018, 274, 402–411.

[186]

Al-Bustami, H.; Bloom, B. P.; Ziv, A.; Goldring, S.; Yochelis, S.; Naaman, R.; Waldeck, D. H.; Paltiel, Y. Optical multilevel spin bit device using chiral quantum dots. Nano Lett. 2020, 20, 8675–8681.

[187]

Tang, H.; Li, Q. Z.; Yan, W. X.; Jiang, X. Y. Reversing the chirality of surface ligands can improve the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 13829–13834.

[188]

Wang, Z.; Tian, Y. J.; Hao, J. H.; Liu, Y.; Tang, J.; Xu, Z. L.; Liu, Y.; Tang, B.; Huang, X.; Zhu, N. L. et al. Chiral nanoclusters as alternative therapeutic strategies to confront the health threat from antibiotic-resistant pathogens. ACS Nano 2024, 18, 7253–7266.

[189]

Qu, S. H.; Jia, Q.; Li, Z.; Wang, Z. L.; Shang, L. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci. Bull. 2022, 67, 1274–1283.

[190]

Zhang, Y. W.; Kim, G.; Zhu, Y. N.; Wang, C. M.; Zhu, R. Y.; Lu, X.; Chang, H. C.; Wang, Y. C. Chiral graphene quantum dots enhanced drug loading into small extracellular vesicles. ACS Nano 2023, 17, 10191–10205.

[191]

Jia, T. T.; Li, B. J.; Yang, G.; Hua, Y.; Liu, J. Q.; Ma, W.; Zang, S. Q.; Chen, X. Y.; Zhao, X. L. Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today 2021, 39, 101222.

Nano Research
Pages 10543-10569
Cite this article:
Qin N, Han H, Guan G, et al. Structurally altered size, composition, shape and interface-dependent optical properties of quantized nanomaterials. Nano Research, 2024, 17(12): 10543-10569. https://doi.org/10.1007/s12274-024-6839-3
Topics:

568

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 May 2024
Revised: 21 June 2024
Accepted: 24 June 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return