Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this study, we successfully synthesized silicon nanotubes (Si-NTs) and silicon nanowires (Si-NWs) in a controllable manner using a catalyst- and template-free method through the direct electrolysis of SiO2 in a molten CaCl2-CaO system, while also proposing a novel formation mechanism for Si-NTs. Si-NWs are formed through electro-deoxidation when the cell voltage is within the range of CaO decomposition voltage and SiO2 decomposition voltage. By subsequently adjusting the voltage to a value between the decomposition potentials of CaCl2 and CaO, in-situ electro-deoxidation of CaO takes place on the surface of the synthesized Si-NWs, leading to the formation of a Ca layer. The formation of Ca-Si diffusion couple leads to the creation of vacancies within the Si-NWs, as the outward diffusion rate of Si exceeds the inward diffusion rate of Ca. These differential diffusion rates between Si and Ca in a diffusion couple exhibit an analogy to the Kirkendall effect. These vacancies gradually accumulate and merge, forming large voids, which ultimately result in the formation of hollow SiCa-NTs. Through a subsequent dealloying process, the removal of the embedded calcium leads to the formation of Si-NTs. Following the application of a carbon coating, the Si-NTs@C composite showcases a high initial discharge capacity of 3211 mAh·g−1 at 1.5 A·g−1 and exhibits exceptional long-term cycling stability, maintaining a capacity of 977 mAh·g−1 after 2000 cycles at 3.0 A·g−1.
Jaramillo-Cabanzo, D. F.; Ajayi, B. P.; Meduri, P.; Sunkara, M. K. One-dimensional nanomaterials in lithium-ion batteries. J. Phys. D: Appl. Phys. 2021, 54, 083001.
Shi, Q. T.; Wang, H. M.; Zhou, J. H.; Ta, H. Q.; Wang, J. Q.; Lian, X. Y.; Kurtyka, K.; Trzebicka, B.; Gemming, T.; Rümmeli, M. H. Synergistic protection of Si anode based on multi-dimensional graphitic carbon skeletons. Nano Res. 2022, 15, 8146–8155.
Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.
Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.
Yang, Y.; Yuan, W.; Kang, W. Q.; Ye, Y. T.; Pan, Q. Q.; Zhang, X. Q.; Ke, Y. Z.; Wang, C.; Qiu, Z. Q.; Tang, Y. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustainable Energy Fuels 2020, 4, 1577–1594.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
Tesfaye, A. T.; Gonzalez, R.; Coffer, J. L.; Djenizian, T. Porous silicon nanotube arrays as anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20495–20498.
He, Z. Y.; Han, T.; Liu, W. F.; Zhou, C. C.; Sun, J. Y.; Zhou, J.; Li, Y. Y. 3D printed sodium-ion batteries via ternary anode design affording hybrid ion storage mechanism. Adv. Energy Mater. 2024, 14, 2303296.
Li, Y. Y.; Zou, Q. M.; Li, Z. J.; Xie, D.; Niu, Y.; Zou, J. Z.; Zeng, X. R.; Huang, J. F. MOF derived Ni-Fe based alloy carbon materials for efficient bifunctional electrocatalysts applied in Zn-air battery. Appl. Surf. Sci. 2022, 572, 151286.
Suzuki, H.; Araki, H.; Tosa, M.; Noda, T. Formation of silicon nanowires by CVD using gold catalysts at low temperatures. Mater. Trans. 2007, 48, 2202–2206.
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.
Leonardi, A. A.; Faro, M. J. L.; Irrera, A. Silicon nanowires synthesis by metal-assisted chemical etching: A review. Nanomaterials 2021, 11, 383.
Schmidt, V.; Wittemann, J. V.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361–388.
Xiao, W.; Jin, X. B.; Deng, Y.; Wang, D. H.; Chen, G. Z. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J. Electroanal. Chem. 2010, 639, 130–140.
Liu, W. F.; Yi, Y. Y.; He, Z. Y.; Han, T.; Sun, J. Y.; Zhou, J.; Li, Y. Y. Customizing CoSe2/Ti3C2Tn MXene hybrid inks toward high-energy-density 3D-printed K-ion hybrid capacitors. Chem. Eng. J. 2023, 474, 145326.
Nohira, T.; Yasuda, K.; Ito, Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat. Mater. 2003, 2, 397–401.
Yang, J. Y.; Lu, S. G.; Kan, S. R.; Zhang, X. J.; Du, J. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem. Commun. 2009, 3273–3275.
Xiao, W.; Wang, X.; Yin, H. Y.; Zhu, H.; Mao, X. H.; Wang, D. H. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv. 2012, 2, 7588–7593.
Dong, Y. F.; Slade, T.; Stolt, M. J.; Li, L. S.; Girard, S. N.; Mai, L. Q.; Jin, S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew. Chem. 2017, 129, 14645–14649.
Weng, W.; Yang, J. R.; Zhou, J.; Gu, D.; Xiao, W. Template-free electrochemical formation of silicon nanotubes from silica. Adv. Sci. 2020, 7, 2001492.
Wang, F.; Liu, W.; Ma, Y. S.; Chen, D.; Li, P.; Yin, H. Y.; Li, W.; Wang, D. H. Fabricating silicon nanotubes by electrochemical exfoliation and reduction of layer-structured CaSiO3 in molten salt. ACS Appl. Mater. Interfaces 2021, 13, 30668–30677.
Wang, F.; Ma, Y. S.; Li, P.; Peng, C.; Yin, H. Y.; Li, W.; Wang, D. H. Electrochemical conversion of silica nanoparticles to silicon nanotubes in molten salts: Implications for high-performance lithium-ion battery anode. ACS Appl. Nano Mater. 2021, 4, 7028–7036.
Jing, S. X.; Xiao, J. X.; Shen, Y. J.; Hong, B.; Gu, D.; Xiao, W. Silicate-mediated electrolytic silicon nanotube from silica in molten salts. Small 2022, 18, 2203251.
Wang, F.; Li, P.; Li, W.; Wang, D. H. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery. ACS Nano 2022, 16, 7689–7700.
Liu, X. L.; Gao, Y. F.; Jin, R. H.; Luo, H. J.; Peng, P.; Liu, Y. Scalable synthesis of Si nanostructures by low-temperature magnesiothermic reduction of silica for application in lithium ion batteries. Nano Energy 2014, 4, 31–38.
Ren, Y.; Xiang, L. Z.; Yin, X. C.; Xiao, R.; Zuo, P. J.; Gao, Y. Z.; Yin, G. P.; Du, C. Y. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110046.
Lu, Y.; Chang, P.; Wang, L. B.; Nzabahimana, J.; Hu, X. L. Yolk–shell Si/SiO x @Void@C composites as anode materials for lithium-ion batteries. Funct. Mater. Lett. 2019, 12, 1850094.
Tao, H. C.; Yang, X. L.; Zhang, L. L.; Ni, S. B. Double-walled core–shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 2014, 20, 1547–1552.
Zhou, Z. R.; Zhang, Y. J.; Hua, Y. X.; Dong, P.; Xu, C. Y.; Li, Y.; Wang, D. Verification of the electro-decomposition of the CaO component in equimolar CaCl2-NaCl molten salt during the direct electrolysis of ilmenite in a two-terminal chamber. Electrochim. Acta 2018, 271, 490–497.
Jin, X. B.; Gao, P.; Wang, D. H.; Hu, X. H.; Chen, G. Z. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew. Chem., Int. Ed. 2004, 43, 733–736.
Xiao, W.; Zhou, J.; Yu, L.; Wang, D. H.; Lou, X. W. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew. Chem. 2016, 128, 7553–7557.
Liang, J. W.; Li, X. N.; Cheng, Q. S.; Hou, Z. G.; Fan, L.; Zhu, Y. C.; Qian, Y. T. High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. Nanoscale 2015, 7, 3440–3444.
Suzuki, R. O.; Fukui, S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Mater. Trans. 2004, 45, 1665–1671.
Noguchi, H.; Natsui, S.; Kikuchi, T.; Suzuki, R. O. Reduction of CaTiO3 by electrolysis in the molten salt CaCl2-CaO. Electrochemistry 2018, 86, 82–87.
Yasuda, K.; Nohira, T.; Hagiwara, R.; Ogata, Y. H. Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2. J. Electrochem. Soc. 2007, 154, E95–E101.
Wang, S. L.; Wang, W.; Li, S. C.; Cao, S. H. Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO. Int. J. Miner. Metall. Mater. 2010, 17, 791–794.
Han, Y.; Zhou, J.; Li, T. Q.; Yi, Z.; Lin, N.; Qian, Y. T. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Res. 2018, 11, 6294–6303.
Xu, M. C.; Pan, R. R.; Zhu, Y.; Jiang, D. C.; Chen, H. Y. Resistive analysis of hydrogen peroxide in one axon of single neuron with nanopipets. Anal. Chem. 2018, 90, 10117–10121.
Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.
Tu, J. X.; Hao, K.; Li, J. P.; Bai, R. C.; Zeng, X. R.; Zhang, F. Z.; Li, A. J. Longitudinal opening and Fe3C modifying of carbon nanotubes applied for high-performance lithium-sulfur batteries. J. Energy Storage 2023, 72, 108423.
Shan, H.; Xiong, D. B.; Li, X. F.; Sun, Y. P.; Yan, B.; Li, D. J.; Lawes, S.; Cui, Y. H.; Sun, X. L. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries. Appl. Surf. Sci. 2016, 364, 651–659.
Lim, K. W.; Lee, J. I.; Yang, J.; Kim, Y. K.; Jeong, H. Y.; Park, S.; Shin, H. S. Catalyst-free synthesis of Si-SiO x core–shell nanowire anodes for high-rate and high-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6340–6345.
Xue, H. J.; Wu, Y. Q.; Zou, Y. G.; Shen, Y. B.; Liu, G.; Li, Q.; Yin, D. M.; Wang, L. M.; Ming, J. Unraveling metal oxide role in exfoliating graphite: New strategy to construct high-performance graphene-modified SiO x -based anode for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1910657.