AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable synthesis of one-dimensional silicon nanostructures based on the dual effects of electro-deoxidation and the Kirkendall effect

Jianxin Tu1,3Shuo Yu1,3Kui Hao1,3Le Sun1,3Ruicheng Bai1,3Fangzhou Zhang1,3Aijun Li1,3( )Hong Liu2( )
Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
Shaoxing institute of technology, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

We controllably synthesized silicon nanotubes (Si-NTs) and silicon nanowires (Si-NWs) based on the dual effects of electro-deoxidation and the Kirkendall effect and their application in lithium-ion batteries.

Abstract

In this study, we successfully synthesized silicon nanotubes (Si-NTs) and silicon nanowires (Si-NWs) in a controllable manner using a catalyst- and template-free method through the direct electrolysis of SiO2 in a molten CaCl2-CaO system, while also proposing a novel formation mechanism for Si-NTs. Si-NWs are formed through electro-deoxidation when the cell voltage is within the range of CaO decomposition voltage and SiO2 decomposition voltage. By subsequently adjusting the voltage to a value between the decomposition potentials of CaCl2 and CaO, in-situ electro-deoxidation of CaO takes place on the surface of the synthesized Si-NWs, leading to the formation of a Ca layer. The formation of Ca-Si diffusion couple leads to the creation of vacancies within the Si-NWs, as the outward diffusion rate of Si exceeds the inward diffusion rate of Ca. These differential diffusion rates between Si and Ca in a diffusion couple exhibit an analogy to the Kirkendall effect. These vacancies gradually accumulate and merge, forming large voids, which ultimately result in the formation of hollow SiCa-NTs. Through a subsequent dealloying process, the removal of the embedded calcium leads to the formation of Si-NTs. Following the application of a carbon coating, the Si-NTs@C composite showcases a high initial discharge capacity of 3211 mAh·g−1 at 1.5 A·g−1 and exhibits exceptional long-term cycling stability, maintaining a capacity of 977 mAh·g−1 after 2000 cycles at 3.0 A·g−1.

Electronic Supplementary Material

Download File(s)
6842_ESM.pdf (2.6 MB)

References

[1]

Jaramillo-Cabanzo, D. F.; Ajayi, B. P.; Meduri, P.; Sunkara, M. K. One-dimensional nanomaterials in lithium-ion batteries. J. Phys. D: Appl. Phys. 2021, 54, 083001.

[2]

Shi, Q. T.; Wang, H. M.; Zhou, J. H.; Ta, H. Q.; Wang, J. Q.; Lian, X. Y.; Kurtyka, K.; Trzebicka, B.; Gemming, T.; Rümmeli, M. H. Synergistic protection of Si anode based on multi-dimensional graphitic carbon skeletons. Nano Res. 2022, 15, 8146–8155.

[3]

Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

[4]

Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.

[5]

Yang, Y.; Yuan, W.; Kang, W. Q.; Ye, Y. T.; Pan, Q. Q.; Zhang, X. Q.; Ke, Y. Z.; Wang, C.; Qiu, Z. Q.; Tang, Y. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustainable Energy Fuels 2020, 4, 1577–1594.

[6]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[7]

Tesfaye, A. T.; Gonzalez, R.; Coffer, J. L.; Djenizian, T. Porous silicon nanotube arrays as anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20495–20498.

[8]

He, Z. Y.; Han, T.; Liu, W. F.; Zhou, C. C.; Sun, J. Y.; Zhou, J.; Li, Y. Y. 3D printed sodium-ion batteries via ternary anode design affording hybrid ion storage mechanism. Adv. Energy Mater. 2024, 14, 2303296.

[9]

Li, Y. Y.; Zou, Q. M.; Li, Z. J.; Xie, D.; Niu, Y.; Zou, J. Z.; Zeng, X. R.; Huang, J. F. MOF derived Ni-Fe based alloy carbon materials for efficient bifunctional electrocatalysts applied in Zn-air battery. Appl. Surf. Sci. 2022, 572, 151286.

[10]

Suzuki, H.; Araki, H.; Tosa, M.; Noda, T. Formation of silicon nanowires by CVD using gold catalysts at low temperatures. Mater. Trans. 2007, 48, 2202–2206.

[11]

Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

[12]

Leonardi, A. A.; Faro, M. J. L.; Irrera, A. Silicon nanowires synthesis by metal-assisted chemical etching: A review. Nanomaterials 2021, 11, 383.

[13]

Schmidt, V.; Wittemann, J. V.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361–388.

[14]

Xiao, W.; Jin, X. B.; Deng, Y.; Wang, D. H.; Chen, G. Z. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J. Electroanal. Chem. 2010, 639, 130–140.

[15]

Liu, W. F.; Yi, Y. Y.; He, Z. Y.; Han, T.; Sun, J. Y.; Zhou, J.; Li, Y. Y. Customizing CoSe2/Ti3C2Tn MXene hybrid inks toward high-energy-density 3D-printed K-ion hybrid capacitors. Chem. Eng. J. 2023, 474, 145326.

[16]

Nohira, T.; Yasuda, K.; Ito, Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat. Mater. 2003, 2, 397–401.

[17]

Yang, J. Y.; Lu, S. G.; Kan, S. R.; Zhang, X. J.; Du, J. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem. Commun. 2009, 3273–3275.

[18]

Xiao, W.; Wang, X.; Yin, H. Y.; Zhu, H.; Mao, X. H.; Wang, D. H. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv. 2012, 2, 7588–7593.

[19]

Dong, Y. F.; Slade, T.; Stolt, M. J.; Li, L. S.; Girard, S. N.; Mai, L. Q.; Jin, S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew. Chem. 2017, 129, 14645–14649.

[20]

Weng, W.; Yang, J. R.; Zhou, J.; Gu, D.; Xiao, W. Template-free electrochemical formation of silicon nanotubes from silica. Adv. Sci. 2020, 7, 2001492.

[21]

Wang, F.; Liu, W.; Ma, Y. S.; Chen, D.; Li, P.; Yin, H. Y.; Li, W.; Wang, D. H. Fabricating silicon nanotubes by electrochemical exfoliation and reduction of layer-structured CaSiO3 in molten salt. ACS Appl. Mater. Interfaces 2021, 13, 30668–30677.

[22]

Wang, F.; Ma, Y. S.; Li, P.; Peng, C.; Yin, H. Y.; Li, W.; Wang, D. H. Electrochemical conversion of silica nanoparticles to silicon nanotubes in molten salts: Implications for high-performance lithium-ion battery anode. ACS Appl. Nano Mater. 2021, 4, 7028–7036.

[23]

Jing, S. X.; Xiao, J. X.; Shen, Y. J.; Hong, B.; Gu, D.; Xiao, W. Silicate-mediated electrolytic silicon nanotube from silica in molten salts. Small 2022, 18, 2203251.

[24]

Wang, F.; Li, P.; Li, W.; Wang, D. H. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery. ACS Nano 2022, 16, 7689–7700.

[25]

Liu, X. L.; Gao, Y. F.; Jin, R. H.; Luo, H. J.; Peng, P.; Liu, Y. Scalable synthesis of Si nanostructures by low-temperature magnesiothermic reduction of silica for application in lithium ion batteries. Nano Energy 2014, 4, 31–38.

[26]

Ren, Y.; Xiang, L. Z.; Yin, X. C.; Xiao, R.; Zuo, P. J.; Gao, Y. Z.; Yin, G. P.; Du, C. Y. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110046.

[27]

Lu, Y.; Chang, P.; Wang, L. B.; Nzabahimana, J.; Hu, X. L. Yolk–shell Si/SiO x @Void@C composites as anode materials for lithium-ion batteries. Funct. Mater. Lett. 2019, 12, 1850094.

[28]

Tao, H. C.; Yang, X. L.; Zhang, L. L.; Ni, S. B. Double-walled core–shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 2014, 20, 1547–1552.

[29]

Zhou, Z. R.; Zhang, Y. J.; Hua, Y. X.; Dong, P.; Xu, C. Y.; Li, Y.; Wang, D. Verification of the electro-decomposition of the CaO component in equimolar CaCl2-NaCl molten salt during the direct electrolysis of ilmenite in a two-terminal chamber. Electrochim. Acta 2018, 271, 490–497.

[30]

Jin, X. B.; Gao, P.; Wang, D. H.; Hu, X. H.; Chen, G. Z. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew. Chem., Int. Ed. 2004, 43, 733–736.

[31]

Xiao, W.; Zhou, J.; Yu, L.; Wang, D. H.; Lou, X. W. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew. Chem. 2016, 128, 7553–7557.

[32]

Liang, J. W.; Li, X. N.; Cheng, Q. S.; Hou, Z. G.; Fan, L.; Zhu, Y. C.; Qian, Y. T. High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. Nanoscale 2015, 7, 3440–3444.

[33]

Suzuki, R. O.; Fukui, S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Mater. Trans. 2004, 45, 1665–1671.

[34]

Noguchi, H.; Natsui, S.; Kikuchi, T.; Suzuki, R. O. Reduction of CaTiO3 by electrolysis in the molten salt CaCl2-CaO. Electrochemistry 2018, 86, 82–87.

[35]

Yasuda, K.; Nohira, T.; Hagiwara, R.; Ogata, Y. H. Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2. J. Electrochem. Soc. 2007, 154, E95–E101.

[36]

Wang, S. L.; Wang, W.; Li, S. C.; Cao, S. H. Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO. Int. J. Miner. Metall. Mater. 2010, 17, 791–794.

[37]

Han, Y.; Zhou, J.; Li, T. Q.; Yi, Z.; Lin, N.; Qian, Y. T. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Res. 2018, 11, 6294–6303.

[38]

Xu, M. C.; Pan, R. R.; Zhu, Y.; Jiang, D. C.; Chen, H. Y. Resistive analysis of hydrogen peroxide in one axon of single neuron with nanopipets. Anal. Chem. 2018, 90, 10117–10121.

[39]

Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

[40]

Tu, J. X.; Hao, K.; Li, J. P.; Bai, R. C.; Zeng, X. R.; Zhang, F. Z.; Li, A. J. Longitudinal opening and Fe3C modifying of carbon nanotubes applied for high-performance lithium-sulfur batteries. J. Energy Storage 2023, 72, 108423.

[41]

Shan, H.; Xiong, D. B.; Li, X. F.; Sun, Y. P.; Yan, B.; Li, D. J.; Lawes, S.; Cui, Y. H.; Sun, X. L. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries. Appl. Surf. Sci. 2016, 364, 651–659.

[42]

Lim, K. W.; Lee, J. I.; Yang, J.; Kim, Y. K.; Jeong, H. Y.; Park, S.; Shin, H. S. Catalyst-free synthesis of Si-SiO x core–shell nanowire anodes for high-rate and high-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6340–6345.

[43]

Xue, H. J.; Wu, Y. Q.; Zou, Y. G.; Shen, Y. B.; Liu, G.; Li, Q.; Yin, D. M.; Wang, L. M.; Ming, J. Unraveling metal oxide role in exfoliating graphite: New strategy to construct high-performance graphene-modified SiO x -based anode for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1910657.

Nano Research
Pages 7814-7823
Cite this article:
Tu J, Yu S, Hao K, et al. Controllable synthesis of one-dimensional silicon nanostructures based on the dual effects of electro-deoxidation and the Kirkendall effect. Nano Research, 2024, 17(9): 7814-7823. https://doi.org/10.1007/s12274-024-6842-8
Topics:

412

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 April 2024
Revised: 09 June 2024
Accepted: 24 June 2024
Published: 12 July 2024
© Tsinghua University Press 2024
Return