AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Impact of Pd single-site coordination structure on catalytic performance for semihydrogenation of acetylene

Yu ZengMinqi XiaFujie GaoChangkai ZhouXueyi ChengLiwei LiuLiu JiaoQiang WuXizhang Wang( )Lijun Yang( )Yining FanZheng Hu( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Two different Pd single-site catalysts are prepared on carbon nanocages by regulating nitrogen sources, which consist of PdN2pyN2pr moieties coordinated by two pyridinic N and two pyrrolic N, and PdN2pyC4x (x = 1–4) by pyridinic N and C, respectively. The former presents 18-fold increase in C2H2 semihydrogenation activity compared to the latter, demonstrating the impact of Pd coordination structure on catalytic performance.

Abstract

Semihydrogenation of trace acetylene in an ethylene gas stream is a vital step for the industrial production of polyethylene, in which Pd single-site catalysts (SSCs) have great potential. Herein, two Pd SSCs with different coordination structures are prepared on hierarchical nitrogen-doped carbon nanocages (hNCNC) by regulating the nitrogen species with or without using dicyandiamide. With using dicyandiamide, the obtained Pd1-Ndicy/hNCNC SSC features the coordinated Pd by two pyridinic N and two pyrrolic N ( PdN2pyN2pr). Without using dicyandiamide, the obtained Pd1/hNCNC SSC features the coordinated Pd by pyridinic N and C ( PdNxpyC4x, x = 1–4). The former exhibits an 18-fold increase in catalytic activity compared to the latter. Theoretical results reveal the abundant unoccupied orbital states above the Fermi level of PdN2pyN2pr moiety, which can facilitate the activation of substrate molecules and dynamics of acetylene hydrogenation as supported by the combined theoretical and experimental results. In addition, the PdN2pyN2pr moiety presents a favorable desorption of ethylene. Consequently, the Pd1-Ndicy/hNCNC SSC exhibits high C2H2 conversion (99%) and C2H4 selectivity (87%) at 160 °C. This study demonstrates the impact of Pd single-site coordination structure on catalytic performance, which is significant for the rational design of advanced Pd SSCs on carbon-based supports.

Electronic Supplementary Material

Download File(s)
6843_ESM.pdf (5.4 MB)

References

[1]

Chai, Y. C.; Han, X.; Li, W. Y.; Liu, S. S.; Yao, S. K.; Wang, C.; Shi, W.; Da-Silva, I.; Manuel, P.; Cheng, Y. Q. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 2020, 368, 1002–1006.

[2]

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

[3]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[4]

Li, Y. R.; Yan, K. L.; Cao, Y. Q.; Ge, X. H.; Zhou, X. G.; Yuan, W. K.; Chen, D.; Duan, X. Z. Mechanistic and atomic-level insights into semihydrogenation catalysis to light olefins. ACS Catal. 2022, 12, 12138–12161.

[5]

Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chin. J. Catal. 2022, 43, 1991–2000.

[6]

Vignola, E.; Steinmann, S. N.; Al Farra, A.; Vandegehuchte, B. D.; Curulla, D.; Sautet, P. Evaluating the risk of C–C bond formation during selective hydrogenation of acetylene on palladium. ACS Catal. 2018, 8, 1662–1671.

[7]

Osswald, J.; Kovnir, K.; Armbruster, M.; Giedigkeit, R.; Jentoft, R. E.; Wild, U.; Grin, Y.; Schlogl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. J. Catal. 2008, 258, 219–227.

[8]

Wu, P. W.; Tan, S.; Moon, J.; Yan, Z. H.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y. Q.; Abney, C. W.; Wu, Z. L. et al. Harnessing strong metal-support interactions via a reverse route. Nat. Commun. 2020, 11, 3042.

[9]

Hyun, K.; Park, Y.; Choi, M. Chain length effects of phenylene sulfide modifiers on selective acetylene partial hydrogenation over Pd catalysts. J. Catal. 2022, 416, 267–276.

[10]

Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581.

[11]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[12]

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

[13]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[14]

Cheng, X. Y.; Shen, Z.; Jiao, L.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021, 3, 100066.

[15]

Qi, Z. J.; Zhou, Y.; Guan, R. N.; Fu, Y. S.; Baek, J. B. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 2023, 35, 2210575.

[16]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[17]

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

[18]

Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.

[19]

Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.

[20]

Wei, S. J.; Liu, X. W.; Wang, C.; Liu, X. C.; Zhang, Q. H.; Li, Z. Atomically dispersed Pd-N1C3 sites on a nitrogen-doped carbon nanosphere for semi-hydrogenation of acetylene. ACS Nano 2023, 17, 14831–14839.

[21]

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

[22]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.

[23]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, e1904177.

[24]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

[25]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[26]

Cheng, X. Y.; Mao, C. H.; Tian, J. Y.; Xia, M. Q.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Correlation between heteroatom coordination and hydrogen evolution for single-site Pt on carbon-based nanocages. Angew. Chem., Int. Ed. 2024, 63, e202401304.

[27]

Xu, F. F.; Feng, B.; Shen, Z.; Chen, Y. Q.; Jiao, L.; Zhang, Y.; Tian, J. Y.; Zhang, J. R.; Wang, X. Z.; Yang, L. J. et al. Oxygen-bridged Cu binuclear sites for efficient electrocatalytic CO2 reduction to ethanol at ultralow overpotential. J. Am. Chem. Soc. 2024, 146, 9365–9374.

[28]

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

[29]

Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

[30]

Li, G. C.; Mao, K.; Liu, M.; Yan, M. L.; Zhao, J.; Zeng, Y.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity. Adv. Mater. 2020, 32, 2004632.

[31]

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

[32]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[33]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[34]

Zaera, F. The surface chemistry of metal-based hydrogenation catalysis. ACS Catal. 2017, 7, 4947–4967.

[35]

Li, F.; Han, G. F.; Bu, Y. F.; Noh, H. J.; Jeon, J. P.; Shin, T. J.; Kim, S. J.; Wu, Y. E.; Jeong, H. Y.; Fu, Z. P. et al. Revealing isolated M−N3C1 active sites for efficient collaborative oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 23678–23683.

Nano Research
Pages 8243-8249
Cite this article:
Zeng Y, Xia M, Gao F, et al. Impact of Pd single-site coordination structure on catalytic performance for semihydrogenation of acetylene. Nano Research, 2024, 17(9): 8243-8249. https://doi.org/10.1007/s12274-024-6843-7
Topics:

260

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 May 2024
Revised: 14 June 2024
Accepted: 24 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return