Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Semihydrogenation of trace acetylene in an ethylene gas stream is a vital step for the industrial production of polyethylene, in which Pd single-site catalysts (SSCs) have great potential. Herein, two Pd SSCs with different coordination structures are prepared on hierarchical nitrogen-doped carbon nanocages (hNCNC) by regulating the nitrogen species with or without using dicyandiamide. With using dicyandiamide, the obtained Pd1-Ndicy/hNCNC SSC features the coordinated Pd by two pyridinic N and two pyrrolic N (
Chai, Y. C.; Han, X.; Li, W. Y.; Liu, S. S.; Yao, S. K.; Wang, C.; Shi, W.; Da-Silva, I.; Manuel, P.; Cheng, Y. Q. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 2020, 368, 1002–1006.
Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.
Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.
Li, Y. R.; Yan, K. L.; Cao, Y. Q.; Ge, X. H.; Zhou, X. G.; Yuan, W. K.; Chen, D.; Duan, X. Z. Mechanistic and atomic-level insights into semihydrogenation catalysis to light olefins. ACS Catal. 2022, 12, 12138–12161.
Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chin. J. Catal. 2022, 43, 1991–2000.
Vignola, E.; Steinmann, S. N.; Al Farra, A.; Vandegehuchte, B. D.; Curulla, D.; Sautet, P. Evaluating the risk of C–C bond formation during selective hydrogenation of acetylene on palladium. ACS Catal. 2018, 8, 1662–1671.
Osswald, J.; Kovnir, K.; Armbruster, M.; Giedigkeit, R.; Jentoft, R. E.; Wild, U.; Grin, Y.; Schlogl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. J. Catal. 2008, 258, 219–227.
Wu, P. W.; Tan, S.; Moon, J.; Yan, Z. H.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y. Q.; Abney, C. W.; Wu, Z. L. et al. Harnessing strong metal-support interactions via a reverse route. Nat. Commun. 2020, 11, 3042.
Hyun, K.; Park, Y.; Choi, M. Chain length effects of phenylene sulfide modifiers on selective acetylene partial hydrogenation over Pd catalysts. J. Catal. 2022, 416, 267–276.
Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581.
Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.
Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.
Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.
Cheng, X. Y.; Shen, Z.; Jiao, L.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021, 3, 100066.
Qi, Z. J.; Zhou, Y.; Guan, R. N.; Fu, Y. S.; Baek, J. B. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 2023, 35, 2210575.
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.
Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.
Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Qin, X. T.; Wang, N.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493.
Wei, S. J.; Liu, X. W.; Wang, C.; Liu, X. C.; Zhang, Q. H.; Li, Z. Atomically dispersed Pd-N1C3 sites on a nitrogen-doped carbon nanosphere for semi-hydrogenation of acetylene. ACS Nano 2023, 17, 14831–14839.
Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, e1904177.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.
Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.
Cheng, X. Y.; Mao, C. H.; Tian, J. Y.; Xia, M. Q.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Correlation between heteroatom coordination and hydrogen evolution for single-site Pt on carbon-based nanocages. Angew. Chem., Int. Ed. 2024, 63, e202401304.
Xu, F. F.; Feng, B.; Shen, Z.; Chen, Y. Q.; Jiao, L.; Zhang, Y.; Tian, J. Y.; Zhang, J. R.; Wang, X. Z.; Yang, L. J. et al. Oxygen-bridged Cu binuclear sites for efficient electrocatalytic CO2 reduction to ethanol at ultralow overpotential. J. Am. Chem. Soc. 2024, 146, 9365–9374.
Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.
Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.
Li, G. C.; Mao, K.; Liu, M.; Yan, M. L.; Zhao, J.; Zeng, Y.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity. Adv. Mater. 2020, 32, 2004632.
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Zaera, F. The surface chemistry of metal-based hydrogenation catalysis. ACS Catal. 2017, 7, 4947–4967.
Li, F.; Han, G. F.; Bu, Y. F.; Noh, H. J.; Jeon, J. P.; Shin, T. J.; Kim, S. J.; Wu, Y. E.; Jeong, H. Y.; Fu, Z. P. et al. Revealing isolated M−N3C1 active sites for efficient collaborative oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 23678–23683.