AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bioinspired coacervate-based bioinks for construction of multiscale tissue engineering scaffolds

Zhongwei Guo1Shiqiang Zhang1Yilin Guo1Jingjing Xia2Xiao Wu1Hao Hu3Rongcheng Hu3Fangli Huang3Qiulei Gao1Chun Liu3( )Jingjiang Qiu1( )Wei Sun2,4( )
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China
Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA
Show Author Information

Graphical Abstract

Inspired by ubiquitous coacervation phenomena in biology, we present a unique mineral-biopolymer coacervation strategy that enables the hierarchical assembly of nanoclay and recombinant human collagen (RHC), which can serve as versatile bioinks.

Abstract

Engineering hydrogels that resemble biological tissues of various lengths via conventional fabrication techniques remains challenging. Three-dimensional (3D) bioprinting has emerged as an advanced approach for constructing complex biomimetic 3D architectures, which are currently restricted by the limited number of available bioinks with high printability, biomimicry, biocompatibility, and proper mechanical properties. Inspired by ubiquitous coacervation phenomena in biology, we present a unique mineral-biopolymer coacervation strategy that enables the hierarchical assembly of nanoclay and recombinant human collagen (RHC). This system was observed to undergo a coacervation transition (liquid‒liquid phase separation) spontaneously. The formed dense phase separated from its supernatant is the coacervate of clay-RHC-rich complexes, where polymer chains are sandwiched between silicate layers. Molecular dynamics simulation was first used to verify and explore the coacervation process. Then, the coacervates were demonstrated to be potential bioinks that exhibited excellent self-supporting and shear-thinning viscoelastic properties. Through extrusion-based printing, the versatility of the bioink was demonstrated by reconstructing the key features of several biological tissues, including multilayered lattice, vascular, nose, and ear-like structures, without the need for precrosslinking operations or support baths. Furthermore, the printed scaffolds were cytocompatible, elicited minimal inflammatory responses, and promoted bone regeneration in calvarial defects.

Electronic Supplementary Material

Download File(s)
6844_ESM.pdf (497.2 KB)

References

[1]

Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.

[2]

Zhang, L. W.; Fu, L.; Zhang, X.; Chen, L. X.; Cai, Q.; Yang, X. P. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 2021, 9, 1547–1573.

[3]

Fratzl, P. Biomimetic materials research: What can we really learn from nature's structural materials. J. R. Soc. Interface 2007, 4, 637–642.

[4]

Qin, Z.; Buehler, M. J. Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 2013, 4, 2187.

[5]

Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

[6]

Sun, J. Y.; Bhushan, B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv. 2012, 2, 7617–7632.

[7]

Weiner, S.; Traub, W.; Wagner, H. D. Lamellar bone: Structure–function relations. J. Struct. Biol. 1999, 126, 241–255.

[8]

Sun, W.; Starly, B.; Daly, A. C.; Burdick, J. A.; Groll, J.; Skeldon, G.; Shu, W. M.; Sakai, Y.; Shinohara, M.; Nishikawa, M. et al. The bioprinting roadmap. Biofabrication 2020, 12, 022002.

[9]

Guo, Z. W.; Dong, L. N.; Xia, J. J.; Mi, S. L.; Sun, W. 3D printing unique nanoclay-incorporated double-network hydrogels for construction of complex tissue engineering scaffolds. Adv. Healthcare. Mater. 2021, 10, 2100036.

[10]

Ouyang, L. L.; Highley, C. B.; Rodell, C. B.; Sun, W.; Burdick, J. A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 2016, 2, 1743–1751.

[11]

Sing, C. E.; Perry, S. L. Recent progress in the science of complex coacervation. Soft Matter. 2020, 16, 2885–2914.

[12]

Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011, 167, 24–37.

[13]

Peng, Q. Y.; Chen, J. S.; Wang, T.; Gong, L.; Peng, X. W.; Wu, M.; Ma, Y. H.; Wu, F. Y.; Yang, D. L.; Zhang, H. et al. Coacervation-driven instant paintable underwater adhesives with tunable optical and electrochromic properties. J. Mater. Chem. A 2021, 9, 12988–13000.

[14]

Khoonkari, M.; Sayed, J. E.; Oggioni, M.; Amirsadeghi, A.; Dijkstra, P.; Parisi, D.; Kruyt, F.; van Rijn, P.; Włodarczyk-Biegun, M. K.; Kamperman, K. Bioinspired processing: Complex coacervates as versatile inks for 3D bioprinting. Adv. Mater. 2023, 35, 2210769.

[15]

Acar, O. K.; Kayitmazer, A. B.; Kose, G. T. Hyaluronic acid/chitosan coacervate-based scaffolds. Biomacromolecules 2018, 19, 1198–1211.

[16]

Lezhnina, M. M.; Grewe, T.; Stoehr, H.; Kynast, U. Laponite blue: Dissolving the insoluble. Angew. Chem., Int. Ed. 2012, 51, 10652–10655.

[17]

Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R: Rep. 2000, 28, 1–63.

[18]

Jin, Y. F.; Shen, Y. Y.; Yin, J.; Qian, J.; Huang, Y. Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications. ACS Appl. Mater. Interfaces 2018, 10, 10461–10470.

[19]

Gao, Q.; Niu, X. F.; Shao, L.; Zhou, L. Y.; Lin, Z. W.; Sun, A. Y.; Fu, J. Z.; Chen, Z. C.; Hu, J.; Liu, Y. D. et al. 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication 2019, 11, 035006.

[20]

Zhai, X. Y.; Ma, Y. F.; Hou, C. Y.; Gao, F.; Zhang, Y. Y.; Ruan, C. S.; Pan, H. B.; Lu, W. W.; Liu, W. G. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater. Sci. Eng. 2017, 3, 1109–1118.

[21]

Gaharwar, A. K.; Cross, L. M.; Peak, C. W.; Gold, K.; Carrow, J. K.; Brokesh, A.; Singh, K. A. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 2019, 31, 1900332.

[22]

Ahlfeld, T.; Cidonio, G.; Kilian, D.; Duin, S.; Akkineni, A. R.; Dawson, J. I.; Yang, S.; Lode, A.; Oreffo, R. O. C.; Gelinsky, M. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 2017, 9, 034103.

[23]

Guo, Z. W.; Wei, Z.; Sun, W. Coacervation-triggered hierarchically assembled hydrogels with application as surgical sealant. Biofabrication 2023, 15, 035021.

[24]

Browne, S.; Zeugolis, D. I.; Pandit, A. Collagen: Finding a solution for the source. Tissue Eng. A 2013, 19, 1491–1494.

[25]

Guo, Z. W.; Xiong, Y. H.; Zhang, S. Q.; Yuan, T. Y.; Xia, J. J.; Wei, R. H.; Chen, L.; Sun, W. Naturally derived highly resilient and adhesive hydrogels with application as surgical adhesive. Int. J. Biol. Macromol. 2023, 253, 127192.

[26]

Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544.

[27]

Brinkman, W. T.; Nagapudi, K.; Thomas, B. S.; Chaikof, E. L. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: Mechanical properties, cell viability, and function. Biomacromolecules 2003, 4, 890–895.

[28]

Ouyang, L. L.; Highley, C. B.; Sun, W.; Burdick, J. A. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv. Mater. 2017, 29, 1604983.

[29]

Schuurman, W.; Levett, P. A.; Pot, M. W.; van Weeren, P. R.; Dhert, W. J. A.; Hutmacher, D. W.; Melchels, F. P. W.; Klein, T. J.; Malda, J. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 2013, 13, 551–561.

[30]

Ouyang, L. L.; Armstrong, J. P. K.; Lin, Y. Y.; Wojciechowski, J. P.; Lee-Reeves, C.; Hachim, D.; Zhou, K.; Burdick, J. A.; Stevens, M. M. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv. 2020, 6, eabc5529.

[31]

Mongondry, P.; Tassin, J. F.; Nicolai, T. Revised state diagram of laponite dispersions. J. Colloid Interface Sci. 2005, 283, 397–405.

[32]

Nicolai, T.; Cocard, S. Light scattering study of the dispersion of laponite. Langmuir 2000, 16, 8189–8193.

[33]

Mongondry, P.; Nicolai, T.; Tassin, J. F. Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J. Colloid Interface Sci. 2004, 275, 191–196.

[34]

Golafshan, N.; Rezahasani, R.; Esfahani, M. T.; Kharaziha, M.; Khorasani, S. N. Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr. Polym. 2017, 176, 392–401.

[35]

Li, J. Y.; Yang, Y. B.; Yu, Y.; Li, Q.; Tan, G. X.; Wang, Y. Y.; Liu, W.; Pan, W. S. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate. J. Mater. Chem. B 2018, 6, 5011–5020.

[36]

Xiong, L. J.; Zhu, M. N.; Hu, X. B.; Liu, X. X.; Tong, Z. Ultrahigh deformability and transparence of hectorite clay nanocomposite hydrogels with nimble pH response. Macromolecules 2009, 42, 3811–3817.

[37]

Bai, S. M.; Zhang, X. L.; Cai, P. Q.; Huang, X. W.; Huang, Y. Q.; Liu, R.; Zhang, M. Y.; Song, J. B.; Chen, X. D.; Yang, H. H. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nanoscale Horiz. 2019, 4, 1333–1341.

[38]

Pawar, N.; Bohidar, H. B. Spinodal decomposition and phase separation kinetics in nanoclay-biopolymer solutions. J. Polym. Sci. B: Polym. Phys. 2010, 48, 555–565.

[39]

Carretero-González, J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B. S.; Giannelis, E. P.; López-Manchado, M. A. Effect of nanoclay on natural rubber microstructure. Macromolecules 2008, 41, 6763–6772.

[40]

Martin, C.; Pignon, F.; Piau, J. M.; Magnin, A.; Lindner, P.; Cabane, B. Dissociation of thixotropic clay gels. Phys. Rev. E 2002, 66, 021401.

[41]

Artzi, N.; Shazly, T.; Crespo, C.; Ramos, A. B.; Chenault, H. K.; Edelman, E. R. Characterization of star adhesive sealants based on PEG/dextran hydrogels. Macromol. Biosci. 2009, 9, 754–765.

[42]

Malda, J.; Visser, J.; Melchels, F. P.; Jüngst, T.; Hennink, W. E.; Dhert, W. J. A.; Groll, J.; Hutmacher, D. W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011–5028.

[43]

Kong, B.; Liu, R.; Cheng, Y.; Cai, X. D.; Liu, J. Y.; Zhang, D. G.; Tan, H.; Zhao, Y. J. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. Nano Res. 2023, 16, 2798–2807.

[44]

Ren, H.; Zhang, Z.; Cheng, X. L.; Zou, Z.; Chen, X. S.; He, C. L. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure. Sci. Adv. 2023, 9, eadh4327.

[45]

Nakayama, A.; Kakugo, A.; Gong, J. P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128.

[46]

Lien, S. M.; Ko, L. Y.; Huang, T. J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009, 5, 670–679.

[47]

Nair, A. K.; Gautieri, A.; Chang, S. W.; Buehler, M. J. Molecular mechanics of mineralized collagen fibrils in bone. Nat. Commun. 2013, 4, 1724.

[48]

Park, H. J.; Jin, J.; Shin, J.; Yang, K.; Lee, C.; Yang, H. S.; Cho, S. W. Catechol-functionalized hyaluronic acid hydrogels enhance angiogenesis and osteogenesis of human adipose-derived stem cells in critical tissue defects. Biomacromolecules 2016, 17, 1939–1948.

[49]

Launey, M. E.; Buehler, M. J.; Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 2010, 40, 25–53.

[50]

Weiner, S.; Wagner, H. D. The material bone: Structure–mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298.

[51]

Cidonio, G.; Glinka, M.; Kim, Y. H.; Kanczler, J. M.; Lanham, S. A.; Ahlfeld, T.; Lode, A.; Dawson, J. I.; Gelinsky, M.; Oreffo, R. O. C. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication 2020, 12, 035010.

[52]

Gaharwar, A. K.; Rivera, C. P.; Wu, C. J.; Schmidt, G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater. 2011, 7, 4139–4148.

[53]

Yang, M. Z.; Li, H. Y.; Wang, J.; Shi, W. X.; Zhang, Q. H.; Xing, H. Z.; Ren, W. B.; Sun, B. Z.; Guo, M. F.; Xu, E. X. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy 2024, 9, 143–153.

[54]

Yuan, F.; Ouyang, C.; Yang, M. Z.; Shi, W. X.; Ren, W. B.; Shen, Y.; Wei, Y.; Deng, X. L.; Wang, X. Regulating the mechanical and optical properties of polymer-based nanocomposites by sub-nanowires. Angew. Chem., Int. Ed. 2023, 62, e202214571.

[55]

Ouyang, W. Y.; Zhang, S. M.; Wang, X. Freestanding block copolymer membranes with tunable pore sizes promoted by subnanometer nanowires. Small 2023, 19, 2206018.

Nano Research
Pages 8209-8219
Cite this article:
Guo Z, Zhang S, Guo Y, et al. Bioinspired coacervate-based bioinks for construction of multiscale tissue engineering scaffolds. Nano Research, 2024, 17(9): 8209-8219. https://doi.org/10.1007/s12274-024-6844-6
Topics:

281

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 April 2024
Revised: 16 June 2024
Accepted: 26 June 2024
Published: 25 July 2024
© Tsinghua University Press 2024
Return