AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Amphipathicity mediated endocytosis of mesoporous silica nanoparticles with tunable frameworks

Runfeng Lin1Tiancong Zhao1Liang Chen1Minchao Liu1Hongyue Yu1Ruicong Wang1Minjia Yuan2Xiaomin Li1( )Dongyuan Zhao1( )
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, China
Show Author Information

Graphical Abstract

The hydrophobic nature of the nanoparticle could disrupt the cell membrane into mono-layer and thus induce a high wrapping speed.

Abstract

Due to the amphiphilic nature of phospholipids in the cell membrane, the amphipathicity of the nanomedicine plays a crucial role in the endocytosis. However, limited biological characterization methods restrict the study of the state of nanoparticles with different amphiphilicities on cell membranes. The understanding of interaction of amphiphilic particle with cell membrane is still lacking. Herein, by combining the dissipative particle dynamics (DPD) with the framework construction of mesoporous silica nanoparticles (MSNs), we demonstrate the enhanced endocytosis induced by the hydrophobicity. DPD results confirm that the presence of hydrophobic groups on the surface of nanoparticles can disturb the integrity of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane and induce activation of phospholipids to a higher energy level, thereby facilitating the wrapping of nanoparticles. To validate the simulation findings, uniform MSNs with hydrophilic pure silica framework and two types of amphiphilic MSNs with varying hydrophilic organic groups in the framework are rationally synthesized by using different silane precursors. The obtained three kinds of MSNs show similar diameter (~ 100 nm) and mesopores (~ 2 nm), but distinct hydrophobicity/hydrophilicity ratio. The phenyl-bridged MSN with a carbon content of 27.1% exhibits enhanced cellular uptake, consistent with the theoretical simulation results. This work sheds light on how the surface amphipathicity influences endocytosis through the interaction with cell membrane.

Electronic Supplementary Material

Video
6845_ESM2.mp4
6845_ESM3.mp4
Download File(s)
6845_ESM1.pdf (4.4 MB)

References

[1]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[2]

Hu, X. L.; Hu, J. M.; Tian, J.; Ge, Z. S.; Zhang, G. Y.; Luo, K. F.; Liu, S. Y. Polyprodrug amphiphiles: Hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 2013, 135, 17617–17629.

[3]

Kim, H.; Kumar, S.; Kang, D. W.; Jo, H.; Park, J. H. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis therapy. ACS Nano 2020, 14, 6519–6531.

[4]

Yang, J. P.; Yang, Z. L.; Wang, H.; Chang, Y. C.; Xu, J. F.; Zhang, X. A polymeric nanoparticle to Co-deliver mitochondria-targeting peptides and Pt(IV) prodrug: Toward high loading efficiency and combination efficacy. Angew. Chem., Int. Ed. 2024, 63, e202402291.

[5]
Xiong, Y.; Rao, Y.; Hu, J. W.; Luo, Z. X.; Chen, C. Nanoparticle-based photothermal therapy for breast cancer noninvasive treatment. Adv. Mater., in press, DOI: 10.1002/adma.202305140.
[6]

Zhao, T. C.; Chen, L.; Liu, M. C.; Lin, R. F.; Cai, W. L.; Hung, C. T.; Wang, S. F.; Duan, L. L.; Zhang, F.; Elzatahry, A. et al. Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat. Chem. 2023, 15, 832–840.

[7]

Sheth, V.; Chen, X. X.; Mettenbrink, E. M.; Yang, W.; Jones, M. A.; M’Saad, O.; Thomas, A. G.; Newport, R. S.; Francek, E.; Wang, L. et al. Quantifying intracellular nanoparticle distributions with three-dimensional super-resolution microscopy. ACS Nano 2023, 17, 8376–8392.

[8]

Nguyen, L. N. M.; Lin, Z. P.; Sindhwani, S.; MacMillan, P.; Mladjenovic, S. M.; Stordy, B.; Ngo, W.; Chan, W. C. W. The exit of nanoparticles from solid tumours. Nat. Mater. 2023, 22, 1261–1272.

[9]

Li, X. H.; He, S.; Jiang, Y. D.; Wang, J.; Yu, Y.; Liu, X. F.; Zhu, F.; Xie, Y. M.; Li, Y. Y.; Ma, C. et al. Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites. Nat. Commun. 2023, 14, 5707.

[10]

Phakatkar, A. H.; Yurkiv, V.; Ghildiyal, P.; Wang, Y. J.; Amiri, A.; Sorokina, L. V.; Zachariah, M. R.; Shokuhfar, T.; Shahbazian-Yassar, R. In situ microscopic studies on the interaction of multi-principal element nanoparticles and bacteria. ACS Nano 2023, 17, 5880–5893.

[11]

Papadopoulou, P.; van der Pol, R.; van Hilten, N.; van Os, W. L.; Pattipeiluhu, R.; Arias-Alpizar, G.; Knol, R. A.; Noteborn, W.; Moradi, M. A.; Ferraz, M. J. et al. Phase-separated lipid-based nanoparticles: Selective behavior at the nano-bio interface. Adv. Mater. 2024, 36, 2310872.

[12]

Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

[13]

Correa, S.; Boehnke, N.; Barberio, A. E.; Deiss-Yehiely, E.; Shi, A.; Oberlton, B.; Smith, S. G.; Zervantonakis, I.; Dreaden, E. C.; Hammond, P. T. Tuning nanoparticle interactions with ovarian cancer through layer-by-layer modification of surface chemistry. ACS Nano 2020, 14, 2224–2237.

[14]

Zhu, J. Y.; Sevencan, C.; Zhang, M. K.; McCoy, R. S. A.; Ding, X. G.; Ye, J. J.; Xie, J. P.; Ariga, K.; Feng, J.; Bay, B. H. et al. Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy. ACS Nano 2020, 14, 3259–3271.

[15]

Verma, A.; Uzun, O.; Hu, Y. H.; Hu, Y.; Han, H. S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mat. 2008, 7, 588–595.

[16]

Wang, W. X.; Wang, P. Y.; Tang, X. T.; Elzatahry, A. A.; Wang, S. W.; Al-Dahyan, D.; Zhao, M. Y.; Yao, C.; Hung, C. T.; Zhu, X. H. et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 2017, 3, 839–846.

[17]

Yu, H. Y.; Yu, Y.; Lin, R. F.; Liu, M. C.; Zhou, Q. Y.; Liu, M. L.; Chen, L.; Wang, W. X.; Elzatahry, A. A.; Zhao, D. Y. et al. Camouflaged virus-like-nanocarrier with a transformable rough surface for boosting drug delivery. Angew. Chem., Int. Ed. 2023, 62, e202216188.

[18]

Wang, F.; Pauletti, G. M.; Wang, J. T.; Zhang, J. M.; Ewing, R. C.; Wang, Y. L.; Shi, D. L. Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 2013, 25, 3485–3489.

[19]

Ding, H. M.; Ma, Y. Q. Interactions between Janus particles and membranes. Nanoscale 2012, 4, 1116–1122.

[20]

Xia, H.; Zhou, W. J.; Li, D. Z.; Peng, F.; Yu, L. Y.; Sang, Y. H.; Liu, H.; Hao, A. J.; Qiu, J. C. Generation of a hydrophobic protrusion on nanoparticles to improve the membrane-anchoring ability and cellular internalization. Angew. Chem., Int. Ed. 2024, 63, e202312755.

[21]

Jiang, Y. J.; Zheng, W.; Tran, K.; Kamilar, E.; Bariwal, J.; Ma, H. R.; Liang, H. J. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat. Commun. 2022, 13, 197.

[22]

Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.

[23]

Lyubartsev, A. P.; Rabinovich, A. L. Force field development for lipid membrane simulations. Biochim. Biophys. Acta (BBA) – Biomembr. 2016, 1858, 2483–2497.

[24]

Reynwar, B. J.; Illya, G.; Harmandaris, V. A.; Müller, M. M.; Kremer, K.; Deserno, M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 2007, 447, 461–464.

[25]

Sun, J. S.; Zhang, L.; Wang, J. L.; Feng, Q.; Liu, D. B.; Yin, Q. F.; Xu, D. Y.; Wei, Y. J.; Ding, B. Q.; Shi, X. H. et al. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 2015, 27, 1402–1407.

[26]

Li, Y.; Yue, T. T.; Yang, K.; Zhang, X. R. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012, 33, 4965–4973.

[27]

Yan, Z. S.; Wu, Z. M.; Li, S. X.; Zhang, X. R.; Yi, X.; Yue, T. T. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. Nanoscale 2019, 11, 19751–19762.

[28]

Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem., Int. Ed. 2006, 45, 3216–3251.

[29]

Teng, Z. G.; Li, W.; Tang, Y. X.; Elzatahry, A.; Lu, G. M.; Zhao, D. Y. Mesoporous organosilica hollow nanoparticles: Synthesis and applications. Adv. Mater. 2019, 31, 1707612.

[30]

Croissant, J. G.; Cattoën, X.; Man, M. W. C.; Durand, J. O.; Khashab, N. M. Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 2015, 7, 20318–20334.

[31]

Mizoshita, N.; Tani, T.; Inagaki, S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 2011, 40, 789–800.

[32]

Teng, Z. G.; Wang, C. Y.; Tang, Y. X.; Li, W.; Bao, L.; Zhang, X. H.; Su, X. D.; Zhang, F.; Zhang, J. J.; Wang, S. J. et al. Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 2018, 140, 1385–1393.

[33]

Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086–15092.

[34]

Teng, Z. G.; Wang, S. J.; Su, X. D.; Chen, G. T.; Liu, Y.; Luo, Z. M.; Luo, W.; Tang, Y. X.; Ju, H. X.; Zhao, D. Y. et al. Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Adv. Mater. 2014, 26, 3741–3747.

[35]

Liu, M. L.; Chen, L.; Zhao, Z. W.; Liu, M. C.; Zhao, T. C.; Ma, Y. Z.; Zhou, Q. Y.; Ibrahim, Y. S.; Elzatahry, A. A.; Li, X. M. et al. Enzyme-based mesoporous nanomotors with near-infrared optical brakes. J. Am. Chem. Soc. 2022, 144, 3892–3901.

[36]

Gielen, E.; Smisdom, N.; VandeVen, M.; De Clercq, B.; Gratton, E.; Digman, M.; Rigo, J. M.; Hofkens, J.; Engelborghs, Y.; Ameloot, M. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): Use of a commercial laser-scanning microscope with analog detection. Langmuir 2009, 25, 5209–5218.

[37]

Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171.

[38]

Wang, S.; Li, X. J.; Gong, X. B.; Liang, H. J. Mechanistic modeling of spontaneous penetration of carbon nanocones into membrane vesicles. Nanoscale 2020, 12, 2686–2694.

[39]

Zhang, L. Y.; Chen, H. M.; Xie, J.; Becton, M.; Wang, X. Q. Interplay of nanoparticle rigidity and its translocation ability through cell membrane. J. Phys. Chem. B 2019, 123, 8923–8930.

[40]

Teng, Z. G.; Zhang, J. J.; Li, W.; Zheng, Y. Y.; Su, X. D.; Tang, Y. X.; Dang, M.; Tian, Y.; Yuwen, L. H.; Weng, L. X. et al. Facile synthesis of yolk-shell-structured triple-hybridized periodic mesoporous organosilica nanoparticles for biomedicine. Small 2016, 12, 3550–3558.

[41]

Mulqueen, M.; Blankschtein, D. Theoretical and experimental investigation of the equilibrium oil-water interfacial tensions of solutions containing surfactant mixtures. Langmuir 2002, 18, 365–376.

[42]

Simon, J.; Wolf, T.; Klein, K.; Landfester, K.; Wurm, F. R.; Mailänder, V. Hydrophilicity regulates the stealth properties of polyphosphoester-coated nanocarriers. Angew. Chem., Int. Ed. 2018, 57, 5548–5553.

[43]

Hoang, H. N.; Hill, T. A.; Fairlie, D. P. Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability. Angew. Chem., Int. Ed. 2021, 60, 8385–8390.

Nano Research
Pages 8350-8359
Cite this article:
Lin R, Zhao T, Chen L, et al. Amphipathicity mediated endocytosis of mesoporous silica nanoparticles with tunable frameworks. Nano Research, 2024, 17(9): 8350-8359. https://doi.org/10.1007/s12274-024-6845-5
Topics:

210

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 May 2024
Revised: 24 June 2024
Accepted: 26 June 2024
Published: 19 July 2024
© Tsinghua University Press 2024
Return