AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular template derived ultrathin N-doped carbon layer on cobalt selenide nanobelts for durable and rapid sodium storage

Chuanliang Wei1Baojuan Xi1Kangdong Tian1Xinlu Zhang1Quanyan Man1Keyan Bao2( )Wutao Mao2Jinkui Feng1( )Shenglin Xiong1( )
Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Shandong University, Jinan 250100, China
Resource Environment and Clean Energy Laboratory, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
Show Author Information

Graphical Abstract

Molecular template derived ultrathin N-doped carbon layer decorated CoSe2 nanobelts (CoSe2/NC) are synthesized by solvothermal reaction and subsequent calcination process. The CoSe2/NC exhibits excellent cycling and rate performance as anodes for sodium–ion batteries due to its nanobelt structure and ultrathin NC layer.

Abstract

Sodium-ion batteries (SIBs) are an attractive battery system because of similar characteristics to lithium-ion batteries (LIBs) and large Na element abundance. Nevertheless, exploring stable, high-capacity and high-rate anode materials for SIBs is still challenging now. Herein, diethylenetriamine (DETA) molecular template derived ultrathin N-doped carbon (NC) layer decorated CoSe2 nanobelts (CoSe2/NC) are prepared by solvothermal reaction followed by calcination process. The CoSe2/NC exhibits large potential as an anode for SIBs. Experiments and theoretical calculations reveal that the in situ formed conductive ultrathin NC layer can not only relieve the volume change of CoSe2 but also accelerate electron and ion transport. In addition, the nanobelt structure of CoSe2/NC with abundant exposed active sites can obviously accelerate the electrochemical kinetics. Under the synergistic effect of special nanobelt structure and NC layer, the rate as well as cycling performances of CoSe2/NC are obviously improved. A superior capacity retention of 94.8% is achieved at 2 A·g−1 after 2000 cycles. When using Na3V2(PO4)3 cathodes, the pouch full batteries can work steadily at 0.5 C, verifying the application ability. CoSe2/NC anodes also exhibit impressive performances in LIBs and potassium-ion batteries (PIBs).

Electronic Supplementary Material

Download File(s)
6846_ESM.pdf (2.4 MB)

References

[1]

Shi, N. X.; Liu, G. Z.; Xi, B. J.; An, X. G.; Sun, C. H.; Xiong, S. L. Heterostructure of 2D MoSe2 nanosheets vertically grown on bowl-like carbon for high-performance sodium storage. Nano Res. 2024, 17, 4023–4030.

[2]

Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

[3]

Jin, J. T.; Liu, Y. C.; Zhao, X. D.; Liu, H.; Deng, S. Q.; Shen, Q. Y.; Hou, Y.; Qi, H.; Xing, X. R.; Jiao, L. F. et al. Annealing in argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem., Int. Ed. 2023, 62, e202219230.

[4]

Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000741.

[5]

Shi, N. X.; Liu, G. Z.; Xi, B. J.; An, X. G.; Sun, C. H.; Liu, X. Z.; Xiong, S. L. MoSe2/TiO2 heterostructure integrated in N-doped carbon nanosheets assembled porous core–shell microspheres for enhanced sodium storage. Nano Res. 2023, 16, 9398–9406.

[6]

Gabriel, E.; Ma, C. R.; Graff, K.; Conrado, A.; Hou, D. W.; Xiong, H. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives. eScience 2023, 3, 100139.

[7]

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

[8]
Wei, C. L.; Wang, Z. R.; Wang, P.; Zhang, X. L.; An, X. G.; Feng, J. K.; Xi, B. J.; Xiong, S. L. One-step growth of ultrathin CoSe2 nanobelts on N-doped MXene nanosheets for dendrite-inhibited and kinetic-accelerated lithium-sulfur chemistry. Sci. Bull., in press, DOI: 10.1016/j.scib.2024.03.043.
[9]

Wei, C. L.; Xi, B. J.; Wang, P.; Wang, Z. R.; An, X. G.; Tian, K. D.; Feng, J. K.; Xiong, S. L. In situ growth engineering on 2D MXenes for next-generation rechargeable batteries. Adv. Energy Sustainability Res. 2023, 4, 2300103.

[10]

Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.

[11]

Yang, J.; Gao, H. C.; Men, S.; Shi, Z. Q.; Lin, Z.; Kang, X. W.; Chen, S. W. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: High-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 2018, 5, 1800763.

[12]

Park, S. K.; Kim, J. K.; Kang, Y. C. Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 2017, 328, 546–555.

[13]

Xiao, Q.; Song, Q. L.; Zheng, K.; Zheng, L.; Zhu, Y. Y.; Chen, Z. H. CoSe2 nanodots confined in multidimensional porous nanoarchitecture towards efficient sodium ion storage. Nano Energy 2022, 98, 107326.

[14]

Shan, H.; Qin, J.; Wang, J. J.; Sari, H. M. K.; Lei, L.; Xiao, W.; Li, W. B.; Xie, C.; Yang, H. J.; Luo, Y. Y. et al. Doping-induced electronic/ionic engineering to optimize the redox kinetics for potassium storage: A case study of Ni-doped CoSe2. Adv. Sci. 2022, 9, 2200341.

[15]

Tabassum, H.; Zhi, C. X.; Hussain, T.; Qiu, T. J.; Aftab, W.; Zou, R. Q. Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Adv. Energy Mater. 2019, 9, 1901778.

[16]

Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2 amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.

[17]

Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.

[18]

Gao, Y.; Hai, P. Q.; Liu, L.; Yin, J. Y.; Gan, Z. H.; Ai, W.; Wu, C.; Cheng, Y. H.; Xu, X. Balanced crystallinity and nanostructure for SnS2 nanosheets through optimized calcination temperature toward enhanced pseudocapacitive Na+ storage. ACS Nano 2022, 16, 14745–14753.

[19]

Tang, Y. C.; Zhao, Z. B.; Hao, X. J.; Wang, Y. W.; Liu, Y.; Hou, Y. N.; Yang, Q.; Wang, X. Z.; Qiu, J. S. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 2017, 5, 13591–13600.

[20]

Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Li, Z. H.; Zhang, H. Q.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy 2018, 53, 524–535.

[21]

Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

[22]

Kim, M.; Fernando, J. F. S.; Li, Z. B.; Alowasheeir, A.; Ashok, A.; Xin, R. J.; Martin, D.; Nanjundan, A. K.; Golberg, D. V.; Yamauchi, Y. et al. Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chem. Eng. J. 2022, 445, 136344.

[23]

Zhu, Y. E.; Yang, L. P.; Sheng, J.; Chen, Y. N.; Gu, H. C.; Wei, J. P.; Zhou, Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 2017, 7, 1701222.

[24]

Xu, E. Z.; Li, P. C.; Quan, J. J.; Zhu, H. W.; Wang, L.; Chang, Y. J.; Sun, Z. J.; Chen, L.; Yu, D. B.; Jiang, Y. Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett. 2021, 13, 40.

[25]

Chen, L. P.; Xu, Y. H.; Cao, G. Q.; Sari, H. M. K.; Duan, R. X.; Wang, J. J.; Xie, C.; Li, W. B.; Li, X. F. Bifunctional catalytic effect of CoSe2 for lithium-sulfur batteries: Single doping versus dual doping. Adv. Funct. Mater. 2022, 32, 2107838.

[26]

Liu, T.; Yang, Y.; Cao, S. W.; Xiang, R. H.; Zhang, L. Y.; Yu, J. G. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery. Adv. Mater. 2023, 35, 2207752.

[27]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[28]

Ge, H. Y.; Fan, S. W.; Liu, J. Y.; Li, G. D. In situ growth of CoSe2 coated in porous carbon layers as anode for efficient sodium-ion batteries. Energy Technol. 2021, 9, 2001074.

[29]

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

[30]

Yin, X. P.; Wang, Z. M.; Liu, Y.; Lu, Z. X.; Long, H. L.; Liu, T.; Zhang, J. J.; Zhao, Y. F. Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon. Nano Res. 2023, 16, 10922–10930.

[31]

Zhang, L. Y.; Zhu, B. C.; Xu, D. F.; Qian, Z. B.; Xie, P.; Liu, T.; Yu, J. G. Yolk–shell FeSe2@CoSe2/FeSe2 heterojunction as anode materials for sodium-ion batteries with high rate capability and stability. J. Mater. Sci. Technol. 2024, 172, 185–195.

[32]

Liu, H. H.; Li, D.; Liu, H. L.; Wang, X.; Lu, Y. X.; Wang, C.; Guo, L. CoSe2 nanoparticles anchored on porous carbon network structure for efficient Na-ion storage. J. Colloid Interface Sci. 2023, 634, 864–873.

[33]

Cui, C.; Wei, Z. X.; Zhou, G.; Wei, W. F.; Ma, J. M.; Chen, L. B.; Li, C. C. Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 7088–7098.

[34]

Zhang, Z. G.; Lin, J.; Hao, J. Y.; Xue, F. F.; Gu, Y. F.; Zhu, Z. C.; Li, Q. H. Exploration of fast ion diffusion kinetics in graphene nanoscrolls encapsulated CoSe2 as advanced anode for high-rate sodium-ion batteries. Carbon 2021, 181, 69–78.

[35]

Yin, H.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715–723.

[36]

Wei, C. L.; Xi, B. J.; Wang, P.; Liang, Y. Z.; Wang, Z. R.; Tian, K. D.; Feng, J. K.; Xiong, S. L. In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating. Adv. Mater. 2023, 35, 2303780.

[37]

Wei, C. L.; Tan, L. W.; Tao, Y.; An, Y. L.; Tian, Y.; Jiang, H. Y.; Feng, J. K.; Qian, Y. T. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Mater. 2021, 34, 12–21.

[38]

Liu, T. Z.; Li, Y. P.; Hou, S.; Yang, C. H.; Guo, Y. Y.; Tian, S.; Zhao, L. Z. Building hierarchical microcubes composed of one-dimensional CoSe2@nitrogen-doped carbon for superior sodium ion batteries. Chem.—Eur. J. 2020, 26, 13716–13724.

[39]

Wang, L.; Hu, M. L.; Lin, C. Z.; Feng, J. T.; Yan, W. Hierarchical CoSe2/TiN/nitrogen-doped carbon nanofibers wrapped with carbon nanotubes: A binder-free anode for enhanced sodium-ion storage. J. Energy Storage 2023, 67, 107584.

[40]

Guo, H. N.; Liu, G. S.; Wang, M. Y.; Zhang, Y.; Li, W. Q.; Chen, K.; Liu, Y. F.; Yue, M. Y.; Wang, Y. J. In-situ fabrication of bone-like CoSe2 Nano-thorn loaded on porous carbon cloth as a flexible electrode for Na-ion storage. Chem. Asian J. 2020, 15, 1493–1499.

[41]

Ge, P.; Hou, H. S.; Li, S. J.; Huang, L. P.; Ji, X. B. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 14716–14726.

[42]

Pan, X. N.; Xi, B. J.; Lu, H. B.; Zhang, Z. C. Y.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 2022, 14, 163.

[43]

Zhang, M. Z.; Liang, Y. Z.; Liu, F.; An, X. G.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Ni2P immobilized on N,P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism. J. Mater. Chem. A 2023, 11, 8162–8172.

[44]

Sun, Z. F.; Chen, Y. X.; Xi, B. J.; Geng, C.; Guo, W. J.; Zhuang, Q. C.; An, X. G.; Liu, J.; Ju, Z. C.; Xiong, S. L. Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage. Energy Storage Mater. 2022, 53, 482–491.

[45]

Wang, B.; Miao, X. W.; Dong, H. L.; Ma, X.; Wu, J. J.; Cheng, Y. F.; Geng, H. B.; Li, C. C. In situ construction of active interfaces towards improved high-rate performance of CoSe2. J. Mater. Chem. A 2021, 9, 14582–14592.

[46]

Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

[47]

Cao, J. M.; Li, J. Z.; Li, D. D.; Yuan, Z. Y.; Zhang, Y. M.; Shulga, V.; Sun, Z. Q.; Han, W. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 2021, 13, 113.

[48]

Xu, E. Z.; Zhang, Y.; Wang, H.; Zhu, Z. F.; Quan, J. J.; Chang, Y. J.; Li, P. C.; Yu, D. B.; Jiang, Y. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chem. Eng. J. 2020, 385, 123839.

[49]

Ui, K.; Fujii, D.; Niwata, Y.; Karouji, T.; Shibata, Y.; Kadoma, Y.; Shimada, K.; Kumagai, N. Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder. J. Power Sources 2014, 247, 981–990.

[50]

Cui, R. C.; Zhou, H. Y.; Li, J. C.; Yang, C. C.; Jiang, Q. Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv. Funct. Mater. 2021, 31, 2103067.

[51]

Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 2017, 29, 1702212.

[52]

He, J. R.; Das, C.; Yang, F.; Maibach, J. Crosslinked poly(acrylic acid) enhances adhesion and electrochemical performance of Si anodes in Li-ion batteries. Electrochim. Acta 2022, 411, 140038.

[53]

Jeschull, F.; Maibach, J.; Félix, R.; Wohlfahrt-Mehrens, M.; Edström, K.; Memm, M.; Brandell, D. Solid electrolyte interphase (SEI) of water-processed graphite electrodes examined in a 65 mAh full cell configuration. ACS Appl. Energy Mater. 2018, 1, 5176–5188.

[54]

Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

[55]

Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.

[56]

Liang, Y. Z.; Song, N.; Zhang, M. Z.; An, X. G.; Song, K. P.; Chen, W. H.; Feng, J. K.; Xiong, S. L.; Xi, B. J. Robust interfacial chemistry induced by B-doping enables rapid, stable sodium storage. Adv. Energy Mater. 2023, 13, 2302825.

[57]

Feng, J.; Luo, S. H.; Lin, Y. C.; Zhan, Y.; Yan, S. X.; Hou, P. Q.; Wang, Q.; Zhang, Y. H. Metal-organic framework derived CoSe2/N-doped carbon core–shell nanoparticles encapsulated in porous N-doped carbon nanotubes as high-performance anodes for sodium-ion batteries. J. Power Sources 2022, 535, 231444.

[58]

Li, W. J.; Yu, C. Y.; Huang, S. Z.; Zhang, C.; Chen, B. B.; Wang, X. F.; Yang, H. Y.; Yan, D.; Bai, Y. Synergetic Sn incorporation-Zn substitution in copper-based sulfides enabling superior Na-ion storage. Adv. Mater. 2024, 36, 2305957.

[59]

Zhang, Y.; Wang, P. X.; Yin, Y. Y.; Liu, N. N.; Song, N.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon 2019, 150, 378–387.

[60]
Wang, Y. X.; Li, M.; Zhang, Y.; Zhang, N. Q. Hard carbon for sodium storage: Mechanism and performance optimization. Nano Res., in press, DOI: 10.1007/s12274-024-6546-0.
[61]

Zhang, Y.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Heterostructured SnS–ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 2019, 356, 1042–1051.

[62]

Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

Nano Research
Pages 8145-8154
Cite this article:
Wei C, Xi B, Tian K, et al. Molecular template derived ultrathin N-doped carbon layer on cobalt selenide nanobelts for durable and rapid sodium storage. Nano Research, 2024, 17(9): 8145-8154. https://doi.org/10.1007/s12274-024-6846-4
Topics:

458

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 06 May 2024
Revised: 26 June 2024
Accepted: 26 June 2024
Published: 12 July 2024
© Tsinghua University Press 2024
Return