Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pd-based catalysts exhibit higher catalytic activity and durability in many electrochemical reactions. However, the electrochemical performance can be further enhanced by fine-tune of the alloy composition. Although binary alloys have been fully studied, the multicomponent alloys are far beyond understanding, which leaves cocktail effect a compromised explanation for the high-entropy alloy. Herein Pd nanosheet-seeded growth was used to synthesize a Pd-Zn-Cd ternary alloy by accurately controlling the Pd-Zn-Cd molar ratio through adjusting the amount of introduced Cd precursor. Through analysis of the crystal phase structure of PdCdZnx and PdZnxCd1−x, the competitive relationship of Zn and Cd in the alloying process with Pd was unveiled: Pd1Cd1 intermetallics (IMC) is thermodynamically favored over Pd1Zn1 IMC in the ternary system. However, the increased structure stability of PdCd over PdZn does not bring about increased durability in the catalytic ethanol oxidation reaction. The morphology selection of Pd seeds is also crucial for the study, as Pd cubes, Pd tetrahedrons, and Pd octahedrons do not form PdZn in the same protocol. The successful alloying through the seeded growth depends on the maximum diffusion depth of foreign atoms into the seed.
Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.
Fan, J. C.; Qi, K.; Zhang, L.; Zhang, H. Y.; Yu, S. S.; Cui, X. Q. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 18008–18014.
Ipadeola, A. K.; Abdelgawad, A.; Salah, B.; Abdullah, A. M.; Eid, K. Interfacial engineering of porous Pd/M (M = Au, Cu, Mn) sponge-like nanocrystals with a clean surface for enhanced alkaline electrochemical oxidation of ethanol. Langmuir 2023, 39, 13830–13840.
Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.
Hu, J. W.; Li, R.; Wang, X.; Wang, S. Z.; Fang, C. H. Strain-induced porous Pd@PdPt core/shell nanocubes as effective all-in-one electrocatalysts toward multialcohol oxidation. ACS Appl. Nano Mater. 2023, 6, 10213–10222.
Qian, C. X.; Sun, W.; Hung, D. L. H.; Qiu, C. Y.; Makaremi, M.; Hari Kumar, S. G.; Wan, L. L.; Ghoussoub, M.; Wood, T. E.; Xia, M. K. et al. Catalytic CO2 reduction by palladium-decorated silicon-hydride nanosheets. Nat. Catal. 2019, 2, 46–54.
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.
Si, L. X.; Li, H.; Zhang, Y.; Zhang, D. H.; An, X. W.; Yao, M. M.; Shao, Y. Y.; Zhu, J.; Hu, S. Shape-dependence in seeded-growth of Pd–Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Res. 2023, 16, 9116–9124.
Fu, S. F.; Zhu, C. Z.; Du, D.; Lin, Y. H. Facile one-step synthesis of three-dimensional Pd–Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 13842–13848.
Liu, C.; Hu, Z.; Li, H.; Qiu, Y. S.; Zhao, W. B.; Zhou, W.; Hu, S. Size-dependent methanol oxidation behavior of Pd–Ag synthesized by the high-temperature shock method. Sci. China Mater. 2023, 66, 3555–3564.
Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329–14336.
Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd–Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.
Zhang, Y. Y.; Wang, J. G.; Yu, X. F.; Baer, D. R.; Zhao, Y.; Mao, L. Q.; Wang, F. Y.; Zhu, Z. H. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces. ACS Energy Lett. 2019, 4, 215–221.
Chen, P.; Huang, S. Quaternary PdCuNiP porous nanosheets with enhanced electrochemical performance in the ethanol oxidation reaction. Inorg. Chem. 2022, 61, 14470–14476.
Wang, C.; Li, D. G.; Chi, M. F.; Pearson, J.; Rankin, R. B.; Greeley, J.; Duan, Z. Y.; Wang, G. F.; van der Vliet, D.; More, K. L. et al. Rational development of ternary alloy electrocatalysts. J. Phys. Chem. Lett. 2012, 3, 1668–1673.
Lee, Y. W.; Im, M.; Hong, J. W.; Han, S. W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018–44026.
Kim, Y.; Lee, Y. W.; Lee, S.; Gong, J.; Lee, H. S.; Han, S. W. One-pot synthesis of ternary alloy hollow nanostructures with controlled morphologies for electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 45538–45546.
Maeda, S.; Ishiyama, T.; Nishida, T.; Ozawa, T.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; ToKo, K. High thermoelectric performance in polycrystalline GeSiSn ternary alloy thin films. ACS Appl. Mater. Interfaces 2022, 14, 54848–54854.
Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838.
Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.
Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang, X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519–7525.
Wang, Y.; Xie, S. F.; Liu, J. Y.; Park, J. H.; Huang, C. Z.; Xia, Y. N. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013, 13, 2276–2281.
Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.
Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced co from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.
Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.
Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 2016, 8, 14793–14802.