AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanoscale “precision strike”: Tumor microenvironment-responsive smart micelles for efficient targeted drug delivery

Dong Wan1,2Yarong Song2Xiujuan Lu2Yanfeng Huang2Jianxin Zhang1Yonghui Liu1Yi Liu1( )Jie Pan1( )
School of Chemistry, Tiangong University, Tianjin 300387, China
School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
Show Author Information

Graphical Abstract

This work designed a novel micelle for intelligent drug delivery, which incorporates a dual-responsive feature to enzyme and reduction with folate targeting.

Abstract

To address the limitations of conventional nanotechnology-based drug delivery systems, this work developed enzyme and reduction dual-responsive polymeric micelles. These micelles were synthesized with copolymers composed of TPGS3350-PVGLIG-DOX (TPD) and FA-SS-DOX (FSD), which endow them with tumor-targeted drug delivery capabilities. TPGS3350 contributes to extending the circulation of micelles in body, augmenting their accumulation in tumor tissues via the enhanced permeability and retention (EPR) effect. Upon localized the tumor site, matrix metalloproteinase 2 (MMP2) cleaves the PVGLIG peptide moiety within the micelles, thereby releasing TPGS3350 and exposing the targeting ligand of folate. This approach enables the subsequent internalization of the micelles by tumor cells through folate receptor-mediated endocytosis. After internalization, the high intracellular concentration of glutathione (GSH) triggers the reduction of the disulfide bond within the FA-SS-DOX, leading to the release of the anticancer-drug doxorubicin (DOX), which promotes apoptosis in the tumor cells and enhances the efficacy of chemotherapy.

Electronic Supplementary Material

Download File(s)
6848_ESM.pdf (652 KB)

References

[1]

Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48.

[2]

Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R. L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263.

[3]

Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741.

[4]

Joice, G. A.; Bivalacqua, T. J.; Kates, M. Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer. Nat. Rev. Urol. 2019, 16, 599–612.

[5]

Li, Y. H.; Li, N.; Pan, W.; Yu, Z. Z.; Yang, L. M.; Tang, B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 2123–2129.

[6]

Labrie, M.; Brugge, J. S.; Mills, G. B.; Zervantonakis, I. K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 2022, 22, 323–339.

[7]

Du, R.; You, Q.; Liu, J. Y.; Wang, C.; Zhu, L.; Yang, Y. L. Dual-functional extracellular vesicles enable synergistic treatment via m6A reader YTHDF1-targeting epigenetic regulation and chemotherapy. Nano Res. 2023, 16, 13309–13321.

[8]

González-Domínguez, E.; Rodríguez-González, B.; Pérez-Lorenzo, M.; Correa-Duarte, M. A. "Takeaway" drug delivery: A new nanomedical paradigm. Nano Res. 2017, 10, 2234–2243.

[9]

Lei, H. L.; Pei, Z. F.; Jiang, C. Y.; Cheng, L. Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy. Exploration 2023, 3, 20220001.

[10]

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

[11]

Chen, B. B.; Guo, K. L.; Zhao, X. Y.; Liu, Z. W.; Xu, C.; Zhao, N. N.; Xu, F. J. Tumor microenvironment-responsive delivery nanosystems reverse immunosuppression for enhanced CO gas/immunotherapy. Exploration 2023, 3, 20220140.

[12]

Ashrafizadeh, M.; Zarrabi, A.; Bigham, A.; Taheriazam, A.; Saghari, Y.; Mirzaei, S.; Hashemi, M.; Hushmandi, K.; Karimi-Maleh, H.; Zare, E. N. et al. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med. Res. Rev. 2023, 43, 2115–2176.

[13]

Detappe, A.; Nguyen, H. V. T.; Jiang, Y.; Agius, M. P.; Wang, W. C.; Mathieu, C.; Su, N. K.; Kristufek, S. L.; Lundberg, D. J.; Bhagchandani, S. et al. Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma. Nat. Nanotechnol. 2023, 18, 184–192.

[14]

Zhu, J.; Ma, N.; Li, S.; Zhang, L.; Tong, X. L.; Shao, Y. Y.; Shen, C.; Wen, Y. Y.; Jian, M. Q.; Shao, Y. L. et al. Reinforced wool keratin fibers via dithiol chain re-bonding. Adv. Funct. Mater. 2023, 33, 2213644.

[15]

Spleis, H.; Sandmeier, M.; Claus, V.; Bernkop-Schnürch, A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv. Colloid Interface Sci. 2023, 313, 102848.

[16]

Zhai, B. T.; Sun, J.; Shi, Y. J.; Zhang, X. F.; Zou, J. B.; Cheng, J. X.; Fan, Y.; Guo, D. Y.; Tian, H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J. Nanobiotechnol. 2022, 20, 509.

[17]

Li, B.; Li, Y. X.; Li, C. C.; Yang, J. H.; Liu, D. L.; Wang, H. B.; Xu, R.; Zhang, Y.; Wei, Q. An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9. Biosens. Bioelectron. 2023, 227, 115180.

[18]

Souri, M.; Shahvandi, M. K.; Chiani, M.; Kashkooli, F. M.; Farhangi, A.; Mehrabi, M. R.; Rahmim, A.; Savage, V. M.; Soltani, M. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Deliv. 2023, 30, 2186312.

[19]

Xu, M. D.; Li, S. L. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett. 2023, 574, 216397.

[20]

Ye, Q. L.; Lin, Y.; Li, R. H.; Wang, H. J.; Dong, C. Y. Recent advances of nanodrug delivery system in the treatment of hematologic malignancies. Semin. Cancer Biol. 2022, 86, 607–623.

[21]

Huang, R. J.; Zhou, P. J.; Chen, B.; Zhu, Y.; Chen, X. Y.; Min, Y. Z. Stimuli-responsive nanoadjuvant rejuvenates robust immune responses to sensitize cancer immunotherapy. ACS Nano 2023, 17, 21455–21469.

[22]

Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.

[23]

Szablowski, J. O.; Bar-Zion, A.; Shapiro, M. G. Achieving spatial and molecular specificity with ultrasound-targeted biomolecular nanotherapeutics. Acc. Chem. Res. 2019, 52, 2427–2434.

[24]

Bu, X. T.; Ji, N.; Dai, L.; Dong, X. Y.; Chen, M.; Xiong, L.; Sun, Q. J. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci. Technol. 2021, 114, 386–398.

[25]

Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y. W.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423–8435.

[26]

Li, Y. P.; An, L.; Lin, J. M.; Tian, Q. W.; Yang, S. P. Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S. Int. J. Nanomed. 2019, 14, 5729–5749.

[27]

Cai, H.; Tan, P.; Chen, X. T.; Kopytynski, M.; Pan, D. Y.; Zheng, X. L.; Gu, L.; Gong, Q. Y.; Tian, X. H.; Gu, Z. W. et al. Stimuli-sensitive linear-dendritic block copolymer-drug prodrug as a nanoplatform for tumor combination therapy. Adv. Mater. 2022, 34, 2108049.

[28]

Zhang, X. N.; Dai, L. H.; Ding, Y. M.; Liu, Q.; Li, X. Y.; Liu, M. T.; Meng, M.; Pan, J.; Xi, R. M.; Yin, Y. M. An MMP-2 sensitive and reduction-responsive prodrug amphiphile for actively targeted therapy of cancer by hierarchical cleavage. Chem. Commun. 2023, 59, 900–903.

[29]

Zheng, Y. T.; Oz, Y.; Gu, Y. M.; Ahamad, N.; Shariati, K.; Chevalier, J.; Kapur, D.; Annabi, N. Rational design of polymeric micelles for targeted therapeutic delivery. Nano Today 2024, 55, 102147.

[30]

Moharil, P.; Wan, Z. Y.; Pardeshi, A.; Li, J.; Huang, H. Z.; Luo, Z. Y.; Rathod, S.; Zhang, Z. Q.; Chen, Y. A.; Zhang, B. et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm. Sin. B 2022, 12, 1148–1162.

[31]

Cao, G. D.; Cao, W.; Zhang, J. W.; Chen, Q.; Chen, J. J.; Chu, Q.; Sun, Q.; Xiong, M. M.; Chen, B.; Li, X. Mesothelin targeted nano-system enhanced chemodynamic therapy and tirapazamine chemotherapy via lactate depletion. Nano Res. 2023, 16, 7108–7118.

[32]

Luiz, M. T.; Di Filippo, L. D.; Alves, R. C.; Araújo, V. H. S.; Duarte, J. L.; Marchetti, J. M.; Chorilli, M. The use of TPGS in drug delivery systems to overcome biological barriers. Eur. Polym. J. 2021, 142, 110129.

[33]

Puig-Rigall, J.; Blanco-Prieto, M. J.; Radulescu, A.; Dreiss, C. A.; González-Gaitano, G. Morphology, gelation and cytotoxicity evaluation of D-α-Tocopheryl polyethylene glycol succinate (TPGS)-Tetronic mixed micelles. J. Colloid Interface Sci. 2021, 582, 353–363.

[34]

Lu, Y.; Zhang, E. S.; Yang, J. H.; Cao, Z. Q. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998.

[35]

Du, Z. J.; Mao, Y.; Zhang, P. F.; Hu, J.; Fu, J. J.; You, Q. J.; Yin, J. TPGS-galactose-modified polydopamine co-delivery nanoparticles of nitric oxide donor and doxorubicin for targeted chemo-photothermal therapy against drug-resistant hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2021, 13, 35518–35532.

[36]

Wan, D.; Zhu, Q. N.; Zhang, J. X.; Chen, X.; Li, F. Z.; Liu, Y.; Pan, J. Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer. Nano Res. 2023, 16, 2851–2858.

[37]

Wang, J. Y.; Wang, H.; Cui, H. Y.; Sun, P.; Yang, X.; Chen, Q. X. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chin. Chem. Lett. 2020, 31, 3143–3148.

[38]

Liang, Q.; Xi, J. Q.; Gao, X. J.; Zhang, R. F.; Yang, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 2020, 35, 100935.

[39]

Wang, Y. P.; Cong, Y. W.; Cai, M. Y.; Liang, X. L.; Wang, L. A.; Zhou, D. F. Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J. Control. Release 2023, 356, 567–579.

[40]

Guo, M. R.; He, Z. S.; Jin, Z. H.; Huang, L. J.; Yuan, J. M.; Qin, S. G.; Wang, X. C.; Cao, L. L.; Song, X. R. Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages. Nano Res. 2023, 16, 925–937.

[41]

Yang, Y. H.; Guo, L. N.; Wang, Z.; Liu, P.; Liu, X. J.; Ding, J. S.; Zhou, W. H. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 2021, 264, 120390.

[42]

Ren, D. X.; Chen, P. C.; Zheng, P.; Xu, Z. N. pH/redox dual response nanoparticles with poly-γ-glutamic acid for enhanced intracellular drug delivery. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 577, 412–420.

[43]

Zhou, X. H.; Wang, L. C.; Xu, Y. J.; Du, W. X.; Cai, X. J.; Wang, F. J.; Ling, Y.; Chen, H. R.; Wang, Z. G.; Hu, B. et al. A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv. 2018, 8, 9812–9821.

[44]

Sood, A.; Gupta, A.; Bharadwaj, R.; Ranganath, P.; Silverman, N.; Agrawal, G. Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr. Polym. 2022, 294, 119833.

[45]

Tan, X.; Zhou, H.; Wang, C. H.; Liu, X. H.; Yang, X. L.; Liu, W. GSH-responsive camptothecin prodrug-based hybrid micellar nanoparticles enable antitumor chemo-immunotherapy by PD-L1 knockdown. Nano Res. 2023, 16, 834–848.

[46]

Li, S. F.; Li, F. Z.; Wan, D.; Chen, Z. Q.; Pan, J.; Liang, X. J. A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery. Bioact. Mater. 2023, 25, 783–795.

[47]

Chen, Q.; Guo, C. J.; Guo, H. M.; Su, Y. G.; Liu, Z. X.; Cao, M.; Chen, D. Q. Celestrol-loaded nanoscale micelles derived from dextran sulfate/PVGLIG/celestrol with MMP-2 sensitivity for the treatment of high-fat-diet-induced obesity. ACS Appl. Nano Mater. 2022, 5, 13236–13244.

[48]

Ray, G. B.; Chakraborty, I.; Moulik, S. P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 2006, 294, 248–254.

[49]

Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336.

Nano Research
Pages 8360-8367
Cite this article:
Wan D, Song Y, Lu X, et al. Nanoscale “precision strike”: Tumor microenvironment-responsive smart micelles for efficient targeted drug delivery. Nano Research, 2024, 17(9): 8360-8367. https://doi.org/10.1007/s12274-024-6848-2
Topics:

233

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 17 June 2024
Accepted: 29 June 2024
Published: 17 July 2024
© Tsinghua University Press 2024
Return