AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Giant piezotronic effect in ferroelectric field effect transistor

Haiming Zhang1,2Mengshuang Chi2,3Shidai Tian2,4Tian Liang1,2Jitao Liu2,3Xiang Zhang2,3Lingyu Wan1( )Zhong Lin Wang2,3,5( )Junyi Zhai2,3( )
Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, China
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Georgia Institute of Technology, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

This work developed a strain-modulated ferroelectric field-effect transistor (St-FeFET) and investigated a novel approach to altering the ferroelectric polarization in St-FeFETs by utilizing strain rather, devices have large current changes for small strains, realized a gauge factor much higher than that of conventional strain sensors.

Abstract

The piezotronics effect utilizes a piezopotential to modulate and control current in piezo-semiconductors. Ferroelectric materials, as a type of piezoelectric materials, possess piezoelectric coefficients that are significantly larger than those found in conventional piezoelectric materials. Here, we propose a strain modulated ferroelectric field-effect transistor (St-FeFET) utilizing external strain instead of gate voltage to achieve ferroelectric modulation, which eliminates the need for gate voltage. By applying a very small strain (0.01%), the St-FeFET can achieve a maximum on-off current ratio of 1250% and realizes a gauge factor (GF) of 1.19 × 106, which is much higher than that of conventional strain sensors. This work proposes a new method for realizing highly sensitive strain sensors and presents innovative approaches to the operation methods of ferroelectric field-effect transistors as well as potential applications for coupling of strain sensors and various devices across different fields.

Electronic Supplementary Material

Download File(s)
6849_ESM.pdf (792 KB)

References

[1]

Wang, Z. L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.

[2]

Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

[3]

Chi, M. S.; Zhao, Y. L.; Zhang, X.; Jia, M. M.; Yu, A. F.; Wang, Z. L.; Zhai, J. Y. A piezotronic and magnetic dual-gated ferroelectric semiconductor transistor. Adv. Funct. Mater. 2023, 33, 2307901.

[4]

Guo, S. F.; Chen, S. T.; Zhang, L.; Chen, Y. F.; Yao, K. Plastic strain determination with nonlinear ultrasonic waves using in situ integrated piezoelectric ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 95–101.

[5]

Wang, B.; Hong, J. F.; Yang, Y. T.; Zhao, H. X.; Long, L. S.; Zheng, L. S. Achievement of a giant piezoelectric coefficient and piezoelectric voltage coefficient through plastic molecular-based ferroelectric materials. Matter 2022, 5, 1296–1304.

[6]

Duerloo, K. A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.

[7]

Wang, F.; Liu, J.; Huang, W. H.; Cheng, R. Q.; Yin, L.; Wang, J. J.; Sendeku, M. G.; Zhang, Y.; Zhan, X. Y.; Shan, C. X. et al. Subthermionic field-effect transistors with sub-5 nm gate lengths based on van der Waals ferroelectric heterostructures. Sci. Bull. 2020, 65, 1444–1450.

[8]

Zhang, K.; Meng, D. H.; Bai, F. M.; Zhai, J. Y.; Wang, Z. L. Photon-memristive system for logic calculation and nonvolatile photonic storage. Adv. Funct. Mater. 2020, 30, 2002945.

[9]

Vaidya, J.; Kanthi, R. S. S.; Alam, S.; Amin, N.; Aziz, A.; Shukla, N. A three-terminal non-volatile ferroelectric switch with an insulator-metal transition channel. Sci. Rep. 2022, 12, 2199.

[10]

Ahmad, W.; Wu, J.; Zhuang, Q. D.; Neogi, A.; Wang, Z. M. Research process on photodetectors based on group-10 transition metal dichalcogenides. Small 2023, 19, 2207641.

[11]

Xiong, L. W.; Wang, K.; Li, D. L.; Luo, X. G.; Weng, J.; Liu, Z. T.; Zhang, H. Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films. FlatChem 2020, 21, 100161.

[12]

Tan, C. L.; Lai, Z. C.; Zhang, H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 2017, 29, 1701392.

[13]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[14]

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

[15]

Montes, E.; Schwingenschlogl, U. High-performance field-effect transistors based on αP and βP. Adv. Mater. 2019, 31, 1807810.

[16]

Dai, M. J.; Zheng, W.; Zhang, X.; Wang, S. M.; Lin, J. H.; Li, K.; Hu, Y. X.; Sun, E. W.; Zhang, J.; Qiu, Y. F. et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Lett. 2020, 20, 201–207.

[17]

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

[18]

Sar, H.; Taghipour, N.; Lisheshar, I. W.; Delikanli, S.; Demirtaş, M.; Demir, H. V.; Ay, F.; Perkgöz, N. K. MoS2 phototransistor sensitized by colloidal semiconductor quantum wells. Adv. Opt. Mater. 2020, 8, 2001198.

[19]

Sun, Y. X.; Jiang, L. Y.; Wang, Z.; Hou, Z. F.; Dai, L. Y.; Wang, Y. K.; Zhao, J. Y.; Xie, Y. H.; Zhao, L. B.; Jiang, Z. D. et al. Multiwavelength high-detectivity MoS2 photodetectors with schottky contacts. ACS Nano 2022, 16, 20272–20280.

[20]

Zhai, Y. B.; Feng, Z. H.; Zhou, Y.; Han, S. T. Energy-efficient transistors: Suppressing the subthreshold swing below the physical limit. Mater. Horiz. 2021, 8, 1601–1617.

[21]

Li, C. Y.; Li, L.; Zhang, F. Q.; Li, Z. Y.; Zhu, W. F.; Dong, L. X.; Zhao, J. High-performance C60 coupled ferroelectric enhanced MoS2 nonvolatile memory. ACS Appl. Mater. Interfaces 2023, 15, 16910–16917.

[22]

Sharma, A.; Roy, K. 1T non-volatile memory design using sub-10nm ferroelectric FETs. IEEE Electron Device Lett. 2018, 39, 359–362.

[23]

Xu, L. P.; Duan, Z. H.; Zhang, P.; Wang, X.; Zhang, J. Z.; Shang, L. Y.; Jiang, K.; Li, Y. W.; Zhu, L. Q.; Gong, Y. J. et al. Ferroelectric-modulated MoS2 field-effect transistors as multilevel nonvolatile memory. ACS Appl. Mater. Interfaces 2020, 12, 44902–44911.

[24]

Chi, M. S.; Li, A. L.; Zhang, X.; Li, Z. K.; Jia, M. M.; Wang, J.; Wang, Z. L.; Zhai, J. Y. Strain tuning on Van der Waals negative capacitance transistors. Nano Energy 2024, 126, 109640.

[25]

Luk’yanchuk, I.; Razumnaya, A.; Sené, A.; Tikhonov, Y.; Vinokur, V. M. The ferroelectric field-effect transistor with negative capacitance. npj Comput. Mater. 2022, 8, 52.

[26]

Bian, J. H.; Cao, Z. Y.; Zhou, P. Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 2021, 8, 041313.

[27]

Zhao, L.; Fang, H.; Wang, J.; Nie, F.; Li, R. Q.; Wang, Y. L.; Zheng, L. M. Ferroelectric artificial synapses for high-performance neuromorphic computing: Status, prospects, and challenges. Appl. Phys. Lett. 2024, 124, 030501.

[28]
Sun, Y. X.; Wang, Y. K.; Wang, Z.; Jiang, L. Y.; Hou, Z. F.; Dai, L. Y.; Zhao, J. Y.; Xie, Y. H.; Zhao, L. B.; Jiang, Z. D. et al. Ambipolar MoS2 field effect transistors with negative photoconductivity and high responsivity using an ultrathin epitaxial ferroelectric gate. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402185.
[29]

Wang, Y.; Liu, E. F.; Gao, A. Y.; Cao, T. J.; Long, M. S.; Pan, C.; Zhang, L. L.; Zeng, J. W.; Wang, C. Y.; Hu, W. D. et al. Negative photoconductance in van der waals heterostructure-based floating gate phototransistor. ACS Nano 2018, 12, 9513–9520.

[30]

Kiran, R.; Kumar, A.; Kumar, R.; Vaish, R. Effect of poling orientation on piezoelectric materials operating in longitudinal mode. Mater. Res. Express 2019, 6, 065711.

[31]

Li, F.; Jin, L.; Xu, Z.; Zhang, S. J. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 2014, 1, 011103.

[32]

Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.

[33]

Cheng, Z. F.; Xia, M. G.; Liu, S. R.; Hu, R. X.; Liang, G. Y.; Zhang, S. L. Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition. Appl. Surf. Sci. 2019, 476, 1008–1015.

[34]

Li, S. J.; Tian, S. D.; Yao, Y.; He, M.; Chen, L.; Zhang, Y.; Zhai, J. Y. Enhanced electrical performance of monolayer MoS2 with rare earth element sm doping. Nanomaterials 2021, 11, 769.

[35]

Liu, Y. D.; Guo, J. M.; Yu, A. F.; Zhang, Y.; Kou, J. Z.; Zhang, K.; Wen, R. M.; Zhang, Y.; Zhai, J. Y.; Wang, Z. L. Magnetic-induced-piezopotential gated MoS2 field-effect transistor at room temperature. Adv. Mater. 2018, 30, 1704524.

[36]

Yan, W. J.; Fuh, H. R.; Lv, Y. H.; Chen, K. Q.; Tsai, T. Y.; Wu, Y. R.; Shieh, T. H.; Hung, K. M.; Li, J. C.; Zhang, D. et al. Giant gauge factor of Van der Waals material based strain sensors. Nat. Commun. 2021, 12, 2018.

[37]

Lee, H. J.; Zhang, S. J.; Luo, J.; Li, F.; Shrout, T. R. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 2010, 20, 3154–3162.

Nano Research
Pages 8465-8471
Cite this article:
Zhang H, Chi M, Tian S, et al. Giant piezotronic effect in ferroelectric field effect transistor. Nano Research, 2024, 17(9): 8465-8471. https://doi.org/10.1007/s12274-024-6849-1
Topics:

338

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 28 June 2024
Accepted: 29 June 2024
Published: 27 July 2024
© Tsinghua University Press 2024
Return