Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Green hydrogen production via seawater electrolysis holds a great promise for carbon-neutral energy production. However, the development of efficient and low-cost bifunctional electrocatalysts for seawater electrolysis at an industrial level remains a significant challenge. Herein, we report a facile approach based on one-dimensional (1D) cobalt carbonate hydroxide (CCH) nanoneedles (NNs) as skeleton and zeolitic imidazolate framework-67 (ZIF-67) as a sacrificial template to construct a self-supported NiCo layered double hydroxide (NiCo LDH) heterostructure nanocage (CCH@NiCo LDH) anchoring on the carbon felt (CF). The NiCo LDHs have hollow features, consisting of ultrathin layered hydroxide nanosheets. Benefiting from the structural advantages, unique carbon substrate and desirable composition, three-dimensional (3D) NiCo LDH nanocages exhibit superior performance as a bifunctional catalyst for overall seawater splitting at an industrial level and good corrosion resistance in alkaline media. In the alkaline seawater (1 M KOH + 0.5 M NaCl), it exhibits low overpotentials of 356 mV for hydrogen evolution reaction (HER) and 433 mV for oxygen evolution reaction (OER) at 400 mA·cm−2, much better than most of reported non-noble metal catalysts. Consequently, the obtained CF electrode loading of CCH@NiCo LDH exhibits outstanding performance as anodes and cathodes for overall alkaline seawater splitting, with remarkably low cell voltages of 1.56 and 1.89 V at current densities of 10 and 400 mA·cm−2, respectively. Moreover, the robust stability of 100 h is also demonstrated at above 200 mA·cm−2 in alkaline seawater. Our present work demonstrates significant potential for constructing effective cost-efficient and non-noble-metal bifunctional electrocatalyst and electrode for industrial seawater splitting.
Yang, X.; Nielsen, C. P.; Song, S. J.; McElroy, M. B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965.
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.
Xu, S. R.; Wu, Q.; Lu, B. A.; Tang, T.; Zhang, J. N.; Hu, J. S. Recent advances and future prospects on industrial catalysts for green hydrogen production in alkaline media. Acta Phys. Chim. Sin. 2023, 39, 2209001.
Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.
Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.
Jin, H. Y.; Xu, J.; Liu, H.; Shen, H. F.; Yu, H. M.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 2023, 9, eadi7755.
Cui, B. H.; Shi, Y.; Li, G.; Chen, Y. N.; Chen, W.; Deng, Y. D.; Hu, W. B. Challenges and opportunities for seawater electrolysis: A mini-review on advanced materials in chlorine-involved electrochemistry. Acta Phys. Chim. Sin. 2022, 38, 2106010.
Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.
Duan, X. X.; Sha, Q. H.; Li, P. S.; Li, T. S.; Yang, G. T.; Liu, W.; Yu, E. D.; Zhou, D. J.; Fang, J. J.; Chen, W. X. et al. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 2024, 15, 1973.
Kang, X.; Yang, F. N.; Zhang, Z. Y.; Liu, H. M.; Ge, S. Y.; Hu, S. Q.; Li, S. H.; Luo, Y. T.; Yu, Q. M.; Liu, Z. B. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607.
Liang, J.; Li, Z. X.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Cai, Z. W. et al. Electrocatalytic seawater splitting: Nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193–235.
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
Wu, Q.; Gao, Q. P.; Shan, B.; Wang, W. Z.; Qi, Y. P.; Tai, X. S.; Wang, X.; Zheng, D. D.; Yan, H.; Ying, B. W. et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. Chim. Sin. 2023, 39, 2303012.
Wang, F. G.; Liu, X.; Lv, Q. X.; Liu, B.; Chai, Y. M.; Dong, B. Transition metal boride-based materials for electrocatalytic water splitting. Chin. J. Struct. Chem. 2022, 41, 2209008–2209044.
Lv, H. W.; Ye, Z. G.; Pei, F.; Peng, X. Y.; Huang, J. T.; Li, D. S.; Jin, Z. Increased oxygen evolution activity in pH-universal electrocatalyst: Urea-modified NiFeCoCN medium-entropy alloy. Chin. J. Chem. 2023, 41, 3290–3298.
Hou, X. B.; Jiang, T. Y.; Xu, X. J.; Wang, X. K.; Zhou, J.; Xie, H. M.; Liu, Z. C.; Chu, L.; Huang, M. H. Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2207074–2207080.
Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.
Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.
Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226.
Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.
Zhou, L.; Shao, M. F.; Wei, M.; Duan, X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. J. Energy Chem. 2017, 26, 1094–1106.
Xu, L.; Iqbal, R.; Wang, Y. J.; Taimoor, S.; Hao, L. D.; Dong, R. H.; Liu, K. H.; Texter, J.; Sun, Z. Y. Emerging two-dimensional materials: Synthesis, physical properties, and application for catalysis in energy conversion and storage. Innovation Mater. 2024, 2, 100060.
Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.
Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.
Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.
Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.
Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.
Zhang, X.; Yan, F.; Ma, X. Z.; Zhu, C. L.; Wang, Y.; Xie, Y.; Chou, S. L.; Huang, Y. J.; Chen, Y. J. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts. Adv. Energy Mater. 2021, 11, 2102141.
Wang, L. L.; Yang, Y. Y.; Wang, B.; Duan, C. P.; Li, J. H.; Zheng, L. L.; Li, J. H.; Yin, Z. Bifunctional three-dimensional self-supporting multistage structure CC@MOF-74(NiO)@NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. J. Alloys Compd. 2021, 885, 160899.
Yin, Z. H.; He, S. S.; Li, Y. W.; Dai, W. J.; Wang, H.; He, R. H.; Tang, K.; Xiao, Y. M.; Wang, S. B.; Gao, J. et al. Self-supported carbon electrodes with a carbon membrane and Co3O4 nanosheets for high-performance enzymeless glucose detection and supercapacitors. ACS Appl. Nano Mater. 2023, 6, 6208–6220.
Gao, J.; Ma, N.; Zheng, Y. M.; Zhang, J. F.; Gui, J. Z.; Guo, C. K.; An, H. Q.; Tan, X. Y.; Yin, Z.; Ma, D. Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem 2017, 9, 1601–1609.
Le, T. X. H.; Bechelany, M.; Cretin, M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 2017, 122, 564–591.
Zhou, H. T.; Zhang, H. M.; Zhao, P.; Yi, B. L. A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim. Acta 2006, 51, 6304–6312.
Yao, F. B.; Zhong, Y.; Yang, Q.; Wang, D. B.; Chen, F.; Zhao, J. W.; Xie, T.; Jiang, C.; An, H. X.; Zeng, G. M. et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. J. Hazard. Mater. 2017, 323, 602–610.
Chen, S. J.; Chu, X. P.; Wu, L. S.; Foord, J. S.; Hu, J. P.; Hou, H. J.; Yang, J. K. Three-dimensional PbO2-modified carbon felt electrode for efficient electrocatalytic oxidation of phenol characterized with in situ ATR-FTIR. J. Phys. Chem. C 2022, 126, 912–921.
Song, D. D.; Wang, L. L.; Qu, Y. N.; Wang, B.; Li, Y. T.; Miao, X. L.; Yang, Y. Y.; Duan, C. P. A high-performance three-dimensional hierarchical structure MOF-derived NiCo LDH nanosheets for non-enzymatic glucose detection. J. Electrochem. Soc. 2019, 166, B1681–B1688.
Zhou, J.; Dou, Y. B.; Zhou, A. W.; Guo, R. M.; Zhao, M. J.; Li, J. R. MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1602643.
Jiang, J.; Li, F. Y.; Su, H.; Gao, Y. Q.; Li, N.; Ge, L. Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chin. Chem. Lett. 2022, 33, 4367–4374.
Jiang, Y.; Li, Y. R.; Jiang, Y. M.; Liu, X. R.; Shen, W.; Li, M.; He, R. X. Interface engineering of FeCo LDH@NiCoP nanowire heterostructures for highly efficient and stable overall water splitting. Chin. Chem. Lett. 2022, 33, 4003–4007.
Ji, S. M.; Jun, H.; Jang, J. S.; Son, H. C.; Borse, P. H.; Lee, J. S. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol. A Chem. 2007, 189, 141–144.
Luo, W. J.; Yang, Z. S.; Li, Z. S.; Zhang, J. Y.; Liu, J. G.; Zhao, Z. Y.; Wang, Z. Q.; Yan, S. C.; Yu, T.; Zou, Z. G. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046–4051.
He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.
Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.
Xiong, W.; Zhou, M.; Huang, X. Y.; Yang, W. J.; Zhang, D.; Lv, Y. K.; Li, H. Direct in situ vertical growth of interlaced mesoporous NiO nanosheets on carbon felt for electrocatalytic ammonia synthesis. Chem.—Eur. J. 2022, 28, e202200779.
Tang, J. J.; Shen, Y. N.; Miao, X. L.; Qin, H.; Song, D. D.; Li, Y. T.; Qu, Y. N.; Yin, Z.; Ren, J. H.; Wang, L. L. et al. Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode. J. Electroanal. Chem. 2019, 840, 174–181.
Li, Z.; Jiang, Z. Z.; Zhu, W. Y.; He, C. C.; Wang, P.; Wang, X.; Li, T. X.; Tian, L. Facile preparation of CoSe2 Nano-vesicle derived from ZIF-67 and their application for efficient water oxidation. Appl. Surf. Sci. 2020, 504, 144368.
Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.
Yu, L.; Wu, L. B.; Song, S. W.; McElhenny, B.; Zhang, F. H.; Chen, S.; Ren, Z. F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|Ni x P|NiCoN microsheet array catalyst. ACS Energy Lett. 2020, 5, 2681–2689.
Liu, Y. J.; He, S. Q.; Chen, Y.; Zou, Z. H.; Wang, Q. X. Cobalt-promoted formation of oxygen vacancy in NiFe layered double hydroxide nanosheet arrays for electrocatalytic/photovoltage-driven overall water splitting. J. Power Sources 2021, 506, 230097.
Chen, S.; Tang, L.; Feng, H. P.; Zhou, Y. Y.; Zeng, G. M.; Lu, Y.; Yu, J. F.; Ren, X. Y.; Peng, B.; Liu, X. C. Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Sci. Total Environ. 2019, 670, 921–931.
Que, R. H.; Liu, S.; Yang, Y.; Pan, Y. Y. Core–shell structure Co3O4@NiCo LDH was used as a high efficiency catalyst for overall water splitting. Mater. Lett. 2021, 288, 129364.
Wu, X. L.; Zhao, S.; Yin, L. J.; Wang, L. Q.; Li, L. L.; Hu, F.; Peng, S. J. Amorphous porous sulfides nanosheets with hydrophilic/aerophobic surface for high-current-density water splitting. Chin. Chem. Lett. 2023, 34, 108016.
Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.
Andaveh, R.; Sabour Rouhaghdam, A.; Ai, J. P.; Maleki, M.; Wang, K.; Seif, A.; Barati Darband, G.; Li, J. Y. Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting. Appl. Catal. B: Environ. 2023, 325, 122355.
Shao, L.; Han, X. D.; Shi, L.; Wang, T. Z.; Zhang, Y. S.; Jiang, Z. Q.; Yin, Z. X.; Zheng, X. R.; Li, J. H.; Han, X. P. et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy Mater. 2024, 14, 2303261.
Yu, W. L.; Liu, H. R.; Zhao, Y.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Wu, Z. X.; Chai, Y. M.; Wang, L. Amorphous NiO n coupled with trace PtO x toward superior electrocatalytic overall water splitting in alkaline seawater media. Nano Res. 2023, 16, 6517–6530.