Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To realize large-scale micro/nanofabrication process in superconducting devices, the nano laser direct writing (NLDW) as a potential tool was implemented. In this paper, thermal effect induced laser-matter (superconducting film) interaction based on laser direct writing on Nb films and laser exposure on photoresist were investigated by simulation and experiment. To avoid nanoscale thermal effect on superconducting films, large-scale superconducting nanoarrays with the area up to 100 μm × 100 μm based on laser exposure on photoresist were fabricated. Compared with laser direct writing on superconducting films, which lead to the degradation of superconducting performance such as critical current, transition temperature, the superconducting nanoarrays based on laser exposure on photoresist maintain excellent superconducting performance without degradation. Besides that, by further optimizing the process parameters and the thickness of photoresist, the nanowires with the width down to nanometers are plausible. Compared with the traditional electron beam and ion beam process, to some extent, the nanowires fabrication process based on NLDW provides a more efficient and cost-effective path for the fabrication of large-area superconducting devices/circuits.
Mastomäki, J.; Roddaro, S.; Rocci, M.; Zannier, V.; Ercolani, D.; Sorba, L.; Maasilta, I. J.; Ligato, N.; Fornieri, A.; Strambini, E. et al. InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration. Nano Res. 2017, 10, 3468–3475.
Korzh, B.; Zhao, Q. Y.; Allmaras, J. P.; Frasca, S.; Autry, T. M.; Bersin, E. A.; Beyer, A. D.; Briggs, R. M.; Bumble, B.; Colangelo, M. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics 2020, 14, 250–255.
Reddy, D. V.; Nerem, R. R.; Nam, S. W.; Mirin, R. P.; Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 2020, 7, 1649–1653.
You, L. X. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9, 2673–2692.
Zadeh, I. E.; Chang, J.; Los, J. W. N.; Gyger, S.; Elshaari, A. W.; Steinhauer, S.; Dorenbos, S. N.; Zwiller, V. Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 2021, 118, 190502.
Trabaldo, E.; Arpaia, R.; Arzeo, M.; Andersson, E.; Golubev, D.; Lombardi, F.; Bauch, T. Transport and noise properties of YBCO nanowire based nanoSQUIDs. Supercond. Sci. Technol. 2019, 32, 073001.
Arzeo, M.; Arpaia, R.; Baghdadi, R.; Lombardi, F.; Bauch, T. Toward ultra high magnetic field sensitivity YBa2Cu3O7– δ nanowire based superconducting quantum interference devices. J. Appl. Phys. 2016, 119, 174501.
Xie, M.; Chukharkin, M. L.; Ruffieux, S.; Schneiderman, J. F.; Kalabukhov, A.; Arzeo, M.; Bauch, T.; Lombardi, F.; Winkler, D. Improved coupling of nanowire-based high- Tc SQUID magnetometers-simulations and experiments. Supercond. Sci. Technol. 2017, 30, 115014.
Chen, Y. F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72.
Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J. H.; Heindel, T.; Burger, S. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 2015, 6, 7662.
Manfrinato, V. R.; Stein, A.; Zhang, L. H.; Nam, C. Y.; Yager, K. G.; Stach, E. A.; Black, C. T. Aberration-corrected electron beam lithography at the one nanometer length scale. Nano Lett. 2017, 17, 4562–4567.
Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861.
Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.
Wang, C. H.; Fan, Y.; Shao, J. Y.; Yang, Z. J.; Sun, J. X.; Tian, H. M.; Li, X. M. Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Res. 2021, 14, 2606–2612.
Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Erratum to: Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2017, 10, 729.
Cybart, S. A.; Cho, E. Y.; Wong, T. J.; Wehlin, B. H.; Ma, M. K.; Huynh, C.; Dynes, R. C. Nano Josephson superconducting tunnel junctions in YBa2Cu3O7– δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 2015, 10, 598–602.
Córdoba, R.; Ibarra, A.; Mailly, D.; De Teresa, J. M. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 2018, 18, 1379–1386.
Cho, E. Y.; Ma, M. K.; Huynh, C.; Pratt, K.; Paulson, D. N.; Glyantsev, V. N.; Dynes, R. C.; Cybart, S. A. YBa2Cu3O7– δ superconducting quantum interference devices with metallic to insulating barriers written with a focused helium ion beam. Appl. Phys. Lett. 2015, 106, 252601.
Müller, B.; Karrer, M.; Limberger, F.; Becker, M.; Schröppel, B.; Burkhardt, C. J.; Kleiner, R.; Goldobin, E.; Koelle, D. Josephson junctions and SQUIDs created by focused helium-ion-beam irradiation of YBa2Cu3O7. Phys. Rev. Appl. 2019, 11, 044082.
Cho, E. Y.; Zhou, Y. W.; Cho, J. Y.; Cybart, S. A. Superconducting nano Josephson junctions patterned with a focused helium ion beam. Appl. Phys. Lett. 2018, 113, 022604.
Li, H.; Cai, H.; Cho, E. Y.; McCoy, S. J.; Wang, Y. T.; LeFebvre, J. C.; Zhou, Y. W.; Cybart, S. A. High-transition-temperature nanoscale superconducting quantum interference devices directly written with a focused helium ion beam. Appl. Phys. Lett. 2020, 116, 070601.
Wirtz, T.; De Castro, O.; Audinot, J. N.; Philipp, P. Imaging and analytics on the helium ion microscope. Annu. Rev. Anal. Chem. 2019, 12, 523–543.
Deng, Y. S.; Huang, Q. M.; Zhao, Y.; Zhou, D. M.; Ying, C. F.; Wang, D. Q. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection. Nanotechnology 2017, 28, 045302.
Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 2021, 12, 633–664.
Qin, L.; Huang, Y. Q.; Xia, F.; Wang, L.; Ning, J. Q.; Chen, H. M.; Wang, X.; Zhang, W.; Peng, Y.; Liu, Q. et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett. 2020, 20, 4916–4923.
Luo, P.; Zhao, Y. H. Niobium nitride preparation for superconducting single-photon detectors. Molecules 2023, 28, 6200.
Il'in, K.; Rall, D.; Siegel, M.; Engel, A.; Schilling, A.; Semenov, A.; Huebers, H. W. Influence of thickness, width and temperature on critical current density of Nb thin film structures. Physica C: Supercond. 2010, 470, 953–956.