AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Navigating the safe operation of high-voltage cathodes: Challenges and strategies

Yue SunChangjian ZuoYi-Chun Lu( )
Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

Abstract

Lithium-ion batteries play a crucial role in storing energy for renewable sources and electric vehicles, yet face challenges related to insufficient energy density. Elevating the working-voltage of cathodes is promising to boost the energy density of batteries by increasing both the output voltage and capacity of cathode, which however could compromise life cycle and safety. This review provides a comprehensive summary of essential factors governing pathways of cathode-induced thermal runaway, including electrolyte decomposition, phase transitions, and crosstalk-induced reactions. Electrode and electrolyte modifications aimed at mitigating parasitic reactions and preventing crosstalk were also discussed. The review concludes with insights into the future application of these strategies, providing a comprehensive perspective on the realization of high-energy and safe batteries.

References

[1]

Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

[2]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[3]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[4]

Man, Q. Y.; An, Y. L.; Shen, H. T.; Wei, C. L.; Xiong, S. L.; Feng, J. K. Two-dimensional silicene/silicon and its derivatives: Properties, synthesis and frontier applications. Mater. Today 2023, 67, 566–591.

[5]

An, Y. L.; Zeng, Y. X.; Luan, D. Y.; Lou, X. W. Materials design for high-energy-density anode-free batteries. Matter 2024, 7, 1466–1502.

[6]

Mitali, J.; Dhinakaran, S.; Mohamad, A. A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216.

[7]

Le, T. S.; Nguyen, T. N.; Bui, D. K.; Ngo, T. D. Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage. Appl. Energy 2023, 336, 120817.

[8]

Luo, T. T.; Wang, Y.; Elander, B.; Goldstein, M.; Mu, Y.; Wilkes, J.; Fahrenbruch, M.; Lee, J.; Li, T.; Bao, J. L. et al. Polysulfides in magnesium-sulfur batteries. Adv. Mater. 2024, 36, 2306239.

[9]

Strezoski, L.; Stefani, I. Enabling mass integration of electric vehicles through distributed energy resource management systems. Int. J. Electr. Power Energy Sys. 2024, 157, 109798.

[10]

Barman, P.; Dutta, L.; Bordoloi, S.; Kalita, A.; Buragohain, P.; Bharali, S.; Azzopardi, B. Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renew. Sustain. Energy Rev. 2023, 183, 113518.

[11]

Yang, J.; Liang, X. H.; Ryu, H. H.; Yoon, C. S.; Sun, Y. K. Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future. Energy Storage Mater. 2023, 63, 102969.

[12]

Ren, J. C.; Tang, Y.; Li, W. B.; He, D.; Zhu, H.; Wang, X. Y.; Lan, S.; Yin, Z. J.; Yang, T. T.; Bai, Z. W. et al. Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy. EcoMat 2023, 5, e12344.

[13]

Yang, G. M.; Hou, W. S.; Zhai, Y. F.; Chen, Z. Y.; Liu, C. Y.; Ouyang, C. Y.; Liang, X.; Paoprasert, P.; Hu, N.; Song, S. F. Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat 2023, 5, e12325.

[14]

Xu, W.; Welty, C.; Peterson, M. R.; Read, J. A.; Stadie, N. P. Exploring the limits of the rapid-charging performance of graphite as the anode in lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 010531.

[15]

Wang, X. D.; Bai, Y.; Wang, X. R.; Wu, C. High-voltage layered ternary oxide cathode materials: Failure mechanisms and modification methods. Chin. J. Chem. 2020, 38, 1847–1869.

[16]

Li, T.; Chen, Z. Y.; Bai, F. W.; Li, C. Z.; Li, Y. Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode. J. Energy Chem. 2023, 81, 404–409.

[17]

Han, X.; Wang, S. Y.; Xu, G. M.; Zhong, G. M.; Zhou, Y.; Liu, B.; Jiang, X. Y.; Wang, X.; Li, Y.; Zhang, Z. Q. et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ. Sci. 2021, 14, 5044–5056.

[18]

Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 2014, 4, 1300787.

[19]

Wang, Y.; Feng, X. N.; Huang, W. S.; He, X. M.; Wang, L.; Ouyang, M. G. Challenges and opportunities to mitigate the catastrophic thermal runaway of high-energy batteries. Adv. Energy Mater. 2023, 13, 2203841.

[20]

Xu, C. S.; Feng, X. N.; Huang, W. S.; Duan, Y. K.; Chen, T. Y.; Gao, S.; Lu, L. G.; Jiang, F. C.; Ouyang, M. G. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. J. Energy Storage 2020, 31, 101670.

[21]

Li, C.; Wang, H. W.; Han, X. B.; Wang, Y.; Wang, Y.; Zhang, Y. J.; Feng, X. N.; Ouyang, M. G. An experimental study on thermal runaway behavior for high-capacity Li(Ni0.8Co0.1Mn0.1)O2 pouch cells at different state of charges. J. Electrochem. Energy Convers. Storage 2021, 18, 021012.

[22]

Li, W. F.; Wang, H. W.; Zhang, Y. J.; Ouyang, M. G. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse. J. Energy Storage 2019, 24, 100775.

[23]

Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.

[24]

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

[25]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Li x CoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 34, 171–174

[26]

Weaving, J. S.; Coowar, F.; Teagle, D. A.; Cullen, J.; Dass, V.; Bindin, P.; Green, R.; Macklin, W. J. Development of high energy density Li-ion batteries based on LiNi1− x y Co x Al y O2. J. Power Sources 2001, 9798, 733–735.

[27]

Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151.

[28]

Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.

[29]

Wu, C.; Wu, F.; Chen, L. Q.; Huang, X. J. Fabrications and electrochemical properties of fluorine-modified spinel LiMn2O4 for lithium ion batteries. Solid State Ionics 2002, 152–153, 327–334.

[30]

Bai, Y.; Wu, C.; Wu, F.; Wang, G. Q. Cyclic voltammetry studies on 4 V and 5 V plateaus of non-stoichiometric spinel Li1+ x Mn2− y O4. Trans. Nonferrous Met. Soc. China 2006, 16, 402–408.

[31]

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

[32]

Li, G. H.; Azuma, H.; Tohda, M. LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid-State Lett. 2002, 5, A135–A137.

[33]

Andersson, A. S.; Thomas, J. O.; Kalska, B.; Häggström, L. Thermal stability of LiFePO4-based cathodes. Electrochem. Solid-State Lett. 2000, 3, 66–68.

[34]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[35]

Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

[36]

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

[37]

Tian, Y.; An, Y. L.; Zhang, B. Approaching microsized alloy anodes via solid electrolyte interphase design for advanced rechargeable batteries. Adv. Energy Mater. 2023, 13, 2300123.

[38]

Lu, Y. C.; Mansour, A. N.; Yabuuchi, N.; Shao-Horn, Y. Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: Combined XRD and XPS studies. Chem. Mater. 2009, 21, 4408–4424.

[39]

Quinlan, R. A.; Lu, Y. C.; Shao-Horn, Y.; Mansour, A. N. XPS studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling. J. Electrochem. Soc. 2013, 160, A669–A677.

[40]

Yang, L.; Ravdel, B.; Lucht, B. L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2010, 13, A95–A97.

[41]

Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation. J. Electrochem. Soc. 2016, 163, A798–A809.

[42]

Bernhard, R.; Meini, S.; Gasteiger, H. A. On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins. J. Electrochem. Soc. 2014, 161, A497–A505.

[43]

Mattinen, U.; Klett, M.; Lindbergh, G.; Wreland Lindström, R. Gas evolution in commercial Li-ion battery cells measured by on-line mass spectrometry—Effects of C-rate and cell voltage. J. Power Sources 2020, 477, 228968.

[44]

Aiken, C. P.; Self, J.; Petibon, R.; Xia, X.; Paulsen, J. M.; Dahn, J. R. A survey of in situ gas evolution during high voltage formation in Li-ion pouch cells. J. Electrochem. Soc. 2015, 162, A760–A767.

[45]

Yu, Y.; Karayaylali, P.; Katayama, Y.; Giordano, L.; Gauthier, M.; Maglia, F.; Jung, R.; Lund, I.; Shao-Horn, Y. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J. Phys. Chem. C 2018, 122, 27368–27382.

[46]

Duh, Y. S.; Lee, C. Y.; Chen, Y. L.; Kao, C. S. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochim. Acta 2016, 642, 88–94.

[47]

Laszczynski, N.; Solchenbach, S.; Gasteiger, H. A.; Lucht, B. L. Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage. J. Electrochem. Soc. 2019, 166, A1853–A1859.

[48]

Cai, M. Z.; Dong, Y. H.; Xie, M.; Dong, W. J.; Dong, C. L.; Dai, P.; Zhang, H.; Wang, X.; Sun, X. Z.; Zhang, S. N. et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat Energy 2023, 8, 159–168.

[49]

Dai, Z. S.; Li, Z. J.; Chen, R. J.; Wu, F.; Li, L. Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries. Nat. Commun. 2023, 14, 8087.

[50]

Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces 2018, 10, 38892–38899.

[51]

Rowden, B.; Garcia-Araez, N. A review of gas evolution in lithium ion batteries. Energy Rep. 2020, 6, 10–18.

[52]

Rinkel, B. L. D.; Vivek, J. P.; Garcia-Araez, N.; Grey, C. P. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ. Sci. 2022, 15, 3416–3438.

[53]

Geng, L. X.; Wood, D. L.; Lewis, S. A.; Connatser, R. M.; Li, M. Y.; Jafta, C. J.; Belharouak, I. High accuracy in- situ direct gas analysis of Li-ion batteries. J. Power Sources 2020, 466, 228211.

[54]

Ma, B.; Liu, J.; Yu, R. G. Study on the flammability limits of lithium-ion battery vent gas under different initial conditions. ACS Omega 2020, 5, 28096–28107.

[55]

Bak, S. M.; Nam, K. W.; Chang, W. N. Y. N.; Yu, X. Q.; Hu, E. Y.; Hwang, S.; Stach, E. A.; Kim, K. B.; Chung, K. Y.; Yang, X. Q. Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 2013, 25, 337–351.

[56]

Konishi, H.; Yuasa, T.; Yoshikawa, M. Thermal stability of Li1− y Ni x Mn(1− x )/2Co(1− x )/2O2 layer-structured cathode materials used in Li-ion batteries. J. Power Sources 2011, 196, 6884–6888.

[57]

de Biasi, L.; Schiele, A.; Roca-Ayats, M.; Garcia, G.; Brezesinski, T.; Hartmann, P.; Janek, J. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from in situ gas analysis and operando X-ray diffraction. ChemSusChem 2019, 12, 2240–2250.

[58]

Zhang, S. S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. J. Energy Chem. 2020, 41, 135–141.

[59]

Guilmard, M.; Croguennec, L.; Denux, D.; Delmas, C. Thermal stability of lithium nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 ( x = 0.50 and 0.30). Chem. Mater. 2003, 15, 4476–4483.

[60]

Belharouak, I.; Lu, W. Q.; Vissers, D.; Amine, K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem. Commun. 2006, 8, 329–335.

[61]

Deng, Z. C.; Liu, Y.; Wang, L.; Fu, N.; Li, Y.; Luo, Y. X.; Wang, J. K.; Xiao, X.; Wang, X. Y.; Yang, X. K. et al. Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: A review. Mater. Today 2023, 69, 236–261.

[62]

Liu, X.; Xu, G. L.; Kolluru, V. S. C.; Zhao, C.; Li, Q. T.; Zhou, X. W.; Liu, Y. Z.; Yin, L.; Zhuo, Z. Q.; Daali, A. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 2022, 7, 808–817.

[63]

Sun, Y.; Ren, D. S.; Liu, G. J.; Mu, D. B.; Wang, L.; Wu, B. R.; Liu, J. H.; Wu, N. N.; He, X. M. Correlation between thermal stabilities of nickel-rich cathode materials and battery thermal runaway. Int. J. Energy Res. 2021, 45, 20867–20877.

[64]

Huang, Y. Q.; Lin, Y. C.; Jenkins, D. M.; Chernova, N. A.; Chung, Y.; Radhakrishnan, B.; Chu, I. H.; Fang, J.; Wang, Q.; Omenya, F. et al. Thermal stability and reactivity of cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 7013–7021.

[65]

Zheng, J. X.; Liu, T. C.; Hu, Z. X.; Wei, Y.; Song, X. H.; Ren, Y.; Wang, W. D.; Rao, M. M.; Lin, Y.; Chen, Z. H. et al. Tuning of thermal stability in layered Li(Ni x Mn y Co z )O2. J. Am. Chem. Soc. 2016, 138, 13326–13334.

[66]

Yabuuchi, N.; Kim, Y. T.; Li, H. H.; Shao-Horn, Y. Thermal instability of cycled Li x Ni0.5Mn0.5O2 electrodes: An in situ synchrotron X-ray powder diffraction study. Chem. Mater. 2008, 20, 4936–4951.

[67]

Flores, E.; Vonrüti, N.; Novák, P.; Aschauer, U.; Berg, E. J. Elucidation of Li x Ni0.8Co0.15Al0.05O2 redox chemistry by operando Raman spectroscopy. Chem. Mater. 2018, 30, 4694–4703.

[68]

Li, J. Y.; Hua, H. M.; Kong, X. B.; Yang, H. Y.; Dai, P. P.; Zeng, J.; Zhao, J. B. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials. Energy Storage Mater. 2022, 46, 90–99.

[69]

Bak, S. M.; Hu, E. Y.; Zhou, Y. N.; Yu, X. Q.; Senanayake, S. D.; Cho, S. J.; Kim, K. B.; Chung, K. Y.; Yang, X. Q.; Nam, K. W. Structural changes and thermal stability of charged LiNi x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 22594–22601.

[70]

Song, Y. J.; Cui, Y. P.; Li, B. Y.; Geng, L.; Yan, J. T.; Zhu, D. D.; Zhou, P. F.; Zhou, J.; Yan, Z. F.; Xue, Q. Z. et al. Revealing the origin of high-thermal-stability of single-crystal Ni-rich cathodes toward higher-safety batteries. Nano Energy 2023, 116, 108846.

[71]

Li, Y.; Liu, X.; Wang, L.; Feng, X. N.; Ren, D. S.; Wu, Y.; Xu, G. L.; Lu, L. G.; Hou, J. X.; Zhang, W. F. et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 2021, 85, 105878.

[72]

Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNi x Mn y Co z O2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1361–A1377.

[73]

Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 2017, 8, 4820–4825.

[74]

Takahashi, I.; Kiuchi, H.; Ohma, A.; Fukunaga, T.; Matsubara, E. Cathode electrolyte interphase formation and electrolyte oxidation mechanism for Ni-rich cathode materials. J. Phys. Chem. C 2020, 124, 9243–9248.

[75]

Dose, W. M.; Temprano, I.; Allen, J. P.; Björklund, E.; O’keefe, C. A.; Li, W. Q.; Mehdi, B. L.; Weatherup, R. S.; De Volder, M. F. L.; Grey, C. P. Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 13206–13222.

[76]

Lüchtefeld, J.; Lee, M. Y.; Hemmelmann, H.; Wachs, S.; Behling, C.; Mayrhofer, K. J. J.; Elm, M. T.; Berkes, B. B. Contribution of electrolyte decomposition products and the effect of temperature on the dissolution of transition metals from cathode materials. ACS Omega 2023, 8, 32606–32614.

[77]

Song, Y. Z.; Wang, L.; Sheng, L.; Ren, D. S.; Liang, H. M.; Li, A. P.; Zhang, H.; Xu, H.; He, X. M. The significance of mitigating crosstalk in lithium-ion batteries: A review. Energy Environ. Sci. 2023, 16, 1943–1963.

[78]

Liu, X.; Ren, D. S.; Hsu, H.; Feng, X. N.; Xu, G. L.; Zhuang, M. H.; Gao, H.; Lu, L. G.; Han, X. B.; Chu, Z. Y. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047–2064.

[79]

Hou, J. X.; Feng, X. N.; Wang, L.; Liu, X.; Ohma, A.; Lu, L. G.; Ren, D. S.; Huang, W. S.; Li, Y.; Yi, M. C. et al. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Mater. 2021, 39, 395–402.

[80]

Wang, Y.; Feng, X. N.; Peng, Y.; Zhang, F. K.; Ren, D. S.; Liu, X.; Lu, L. G.; Nitta, Y.; Wang, L.; Ouyang, M. G. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule 2022, 6, 2810–2820.

[81]

Huang, L.; Xu, G. J.; Du, X. F.; Li, J. D.; Xie, B.; Liu, H. S.; Han, P. X.; Dong, S. M.; Cui, G. L.; Chen, L. Q. Uncovering LiH triggered thermal runaway mechanism of a high-energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell. Adv. Sci. 2021, 8, 2100676.

[82]

Chen, M. M.; Zhao, E. Y.; Chen, D. F.; Wu, M. M.; Han, S. B.; Huang, Q. Z.; Yang, L. M.; Xiao, X. L.; Hu, Z. B. Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca Doping. Inorg. Chem. 2017, 56, 8355–8362.

[83]

Chen, W. H.; Zhao, J. J.; Li, Y. Y.; Li, S.; Jin, C. C.; Yang, C. C.; Feng, X. M.; Zhang, J. M.; Mi, L. W. Aluminum insertion-induced enhanced performance of Li(Ni0.83‐ x Co0.10Mn0.07Al y )O2 microspheres for lithium-ion batteries design. ChemElectroChem 2014, 1, 601–610.

[84]

Qiu, Q. Q.; Shadike, Z.; Wang, Q. C.; Yue, X. Y.; Li, X. L.; Yuan, S. S.; Fang, F.; Wu, X. J.; Hunt, A.; Waluyo, I. et al. Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution. ACS Appl. Mater. Interfaces 2019, 11, 23213–23221.

[85]

Park, G. T.; Namkoong, B.; Kim, S. B.; Liu, J.; Yoon, C. S.; Sun, Y. K. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat. Energy 2022, 7, 946–954.

[86]

Luo, D.; Zhu, H.; Xia, Y.; Yin, Z. J.; Qin, Y.; Li, T. Y.; Zhang, Q. H.; Gu, L.; Peng, Y.; Zhang, J. W. et al. A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 2023, 8, 1078–1087.

[87]

Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Yin, L.; Li, T. Y.; Xu, W. Q.; Jia, H.; Li, Q. Y. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 2022, 610, 67–73.

[88]

Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Li, T. Y.; Hwang, I. H.; Xu, W. Q.; Sun, C. J.; Trask, S. et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat. Energy 2023, 8, 695–702.

[89]

Ryu, H. H.; Lim, H. W.; Lee, S. G.; Sun, Y. K. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries. Nat. Energy 2023, 9, 47–56.

[90]

Wu, Y.; Ren, D. S.; Liu, X.; Xu, G. L.; Feng, X. N.; Zheng, Y. J.; Li, Y. L.; Yang, M.; Peng, Y.; Han, X. B. et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte. Adv. Energy Mater. 2021, 11, 2102299.

[91]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[92]

Jiao, S. H.; Ren, X. D.; Cao, R. G.; Engelhard, M. H.; Liu, Y. Z.; Hu, D. H.; Mei, D. H.; Zheng, J. M.; Zhao, W. G.; Li, Q. Y. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746.

[93]

Suo, L. M.; Xue, W. J.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y. M.; Yang, W. L.; Li, Y. X.; Li, J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161.

[94]

Li, Z.; Rao, H. R. S.; Atwi, R.; Sivakumar, B. M.; Gwalani, B.; Gray, S.; Han, K. S.; Everett, T. A.; Ajantiwalay, T. A.; Murugesan, V. et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 868.

[95]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[96]

Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

[97]

Chen, L.; Nian, Q. S.; Ruan, D. G.; Fan, J. J.; Li, Y. C.; Chen, S. Q.; Tan, L. J.; Luo, X.; Cui, Z. Z.; Cheng, Y. F. et al. High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant. Chem. Sci. 2023, 14, 1184–1193.

[98]

Zhao, Y.; Zhou, T. H.; Ashirov, T.; Kazzi, M. E.; Cancellieri, C.; Jeurgens, L. P. H.; Choi, J. W.; Coskun, A. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 2022, 13, 2575.

[99]

Gond, R.; van Ekeren, W.; Mogensen, R.; Naylor, A. J.; Younesi, R. Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 2021, 8, 2913–2928.

[100]

Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

[101]

Hou, J. X.; Wang, L.; Feng, X. N.; Terada, J.; Lu, L. G.; Yamazaki, S.; Su, A. Y.; Kuwajima, Y.; Chen, Y. J.; Hidaka, T. et al. Thermal runaway of lithium-ion batteries employing flame-retardant fluorinated electrolytes. Energy Environ. Mater. 2023, 6, e12297.

[102]

Hou, J. X.; Lu, L. G.; Wang, L.; Ohma, A.; Ren, D. S.; Feng, X. N.; Li, Y.; Li, Y. L.; Ootani, I.; Han, X. B. et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 2020, 11, 5100.

[103]

Feng, X. N.; Zheng, S. Q.; He, X. M.; Wang, L.; Wang, Y.; Ren, D. S.; Ouyang, M. G. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNi x Co y Mn z O2 cathode. Front. Energy Res. 2018, 6, 126.

[104]

Meng, Y. F.; Zhou, D.; Liu, R. L.; Tian, Y.; Gao, Y. F.; Wang, Y.; Sun, B.; Kang, F. Y.; Armand, M.; Li, B. H. et al. Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 2023, 8, 1023–1033.

[105]

Dong, T. T.; Zhang, H. R.; Huang, L.; Ma, J.; Mu, P. Z.; Du, X. F.; Zhang, X. H.; Wang, X. G.; Lu, C. L.; Dong, S. M. et al. A smart polymer electrolyte coordinates the trade-off between thermal safety and energy density of lithium batteries. Energy Storage Mater. 2023, 58, 123–131.

[106]

Zhou, Q.; Dong, S. M.; Lv, Z. L.; Xu, G. J.; Huang, L.; Wang, Q. L.; Cui, Z. L.; Cui, G. L. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 2020, 10, 1903441.

[107]

Yang, S. J.; Yao, N.; Jiang, F. N.; Xie, J.; Sun, S. Y.; Chen, X.; Yuan, H.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew. Chem., Int. Ed. 2022, 61, e202214545.

[108]

Zhang, X. H.; Huang, L.; Xie, B.; Zhang, S. H.; Jiang, Z. X.; Xu, G. J.; Li, J. D.; Cui, G. L. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries. Adv. Energy Mater. 2023, 13, 2203648.

[109]

Ma, L.; Xia, J.; Xia, X.; Dahn, J. R. The impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry. J. Electrochem. Soc. 2014, 161, A1495–A1498.

[110]

Zhang, S. S.; Xu, K.; Jow, T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta 2006, 51, 1636–1640.

[111]

Vendrame, F.; Damay, N.; Rabab, H.; Forgez, C.; Sayegh, M. Non-invasive diagnosis of solid electrolyte interphase and charge transfers resistances for degraded lithium-ion batteries. J. Power Sources 2024, 595, 234049.

[112]

Ju, L. L.; Li, X. N.; Geng, G. C.; Jiang, Q. Y. Degradation diagnosis of lithium-ion batteries considering internal gas evolution. J. Energy Storage 2023, 71, 108084.

[113]

Xu, W. K.; Yang, Y. W.; Shi, F.; Li, L. Y.; Wen, F. Z.; Chen, Q. Ultrasonic phased array imaging of gas evolution in a lithium-ion battery. Cell Rep. Phys. Sci. 2023, 4, 101579.

[114]

Lee, M.; Lee, J.; Shin, Y.; Lee, H. Multiscale imaging techniques for real-time, noninvasive diagnosis of Li-ion battery failures. Small Sci. 2023, 3, 2300063.

[115]

Mei, W. X.; Liu, Z.; Wang, C. D.; Wu, C.; Liu, Y. B.; Liu, P. J.; Xia, X. D.; Xue, X. B.; Han, X. L.; Sun, J. H. et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 2023, 14, 5251.

[116]

Su, T. L.; Lyu, N.; Zhao, Z. X.; Wang, H. R.; Jin, Y. Safety warning of lithium-ion battery energy storage station via venting acoustic signal detection for grid application. J. Energy Storage 2021, 38, 102498.

[117]

Zhang, G. Z.; Chang, J.; Wang, L. G.; Li, J. W.; Wang, C. Y.; Wang, R.; Shi, G. L.; Yu, K.; Huang, W.; Zheng, H. H. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 1081.

[118]

Sun, Y.; Zou, Q. L.; Wang, W. W.; Lu, Y. C. Non-passivating anion adsorption enables reversible magnesium redox in simple non-nucleophilic electrolytes. ACS Energy Lett. 2021, 6, 3607–3613.

[119]

Wang, H. W.; Zhang, J. K.; Zhang, H. D.; Li, W.; Chen, M.; Guo, Q.; Lau, K. C.; Zeng, L.; Feng, G.; Zhai, D. Y. et al. Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Rep. Phys. Sci. 2022, 3, 100919.

[120]

Li, W.; Wang, H. W.; Zhang, J. K.; Zhang, H. D.; Chen, M.; Wang, J. L.; Gao, Y. T.; Zhao, R. Y.; Hu, J. Y.; Feng, G. et al. Non-sacrificial additive enables a non-passivating cathode interface for 4.6 V Li||LiCoO2 batteries. Adv. Energy Mater. 2024, 14, 2303458.

[121]

Bao, W. D.; Qian, G. N.; Zhao, L. Q.; Yu, Y.; Su, L. X.; Cai, X. C.; Zhao, H. J.; Zuo, Y. Q.; Zhang, Y.; Li, H. Y. et al. Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Lett. 2020, 20, 8832–8840.

[122]

Jamil, S.; Fasehullah, M.; Jabar, B.; Liu, P.; Aslam, M. K.; Zhang, Y.; Bao, S. J.; Xu, M. W. Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping. Nano Energy 2022, 94, 106961.

Nano Research
Cite this article:
Sun Y, Zuo C, Lu Y-C. Navigating the safe operation of high-voltage cathodes: Challenges and strategies. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6852-6
Topics:
Part of a topical collection:

271

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 February 2024
Revised: 29 June 2024
Accepted: 30 June 2024
Published: 22 July 2024
© Tsinghua University Press 2024
Return