AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Li-current collector interface in lithium metal batteries

Tian-Yu WangDingyi ZhaoKeyue LiangYuzhang Li( )
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
Show Author Information

Graphical Abstract

This article reviews the latest research advancements on the solid–solid interface between lithium metal and current collectors and provides an outlook on future developments.

Abstract

Interfaces within batteries, such as the widely studied solid electrolyte interface (SEI), profoundly influence battery performance. Among these interfaces, the solid–solid interface between electrode materials and current collectors is crucial to battery performance but has received less discussion and attention. This review highlights the latest research advancements on the solid–solid interface between lithium metal (the next-generation anode) and current collectors (typically copper), focusing on factors affecting the Li-current collector interface and improvement strategies from perspectives of current collector substrate (lithiophilicity, crystal facets, mechanical properties, and topological structure), electrolyte chemistry, current density, stacking pressure, SEI, electric field and temperature, and provides a future directions and opportunities on this topic.

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric vehicles batteries: Requirements and challenges. Joule 2020, 4, 511–515.

[3]

Zhou, B. X.; Bonakdarpour, A.; Stoševski, I.; Fang, B. Z.; Wilkinson, D. P. Modification of Cu current collectors for lithium metal batteries—A review. Prog. Mater. Sci. 2022, 130, 100996.

[4]
Wang, T.-Y.; Mao, J.; Zhang, B. Y.; Zhang, G.-X.; Dang, Z.-M. Polymeric insulating materials characteristics for high-voltage applications. Nat. Rev. Electr. Eng., in press, DOI: 10.1038/s44287-024-00070-5.
[5]

Liu, G. X.; Wan, W.; Nie, Q.; Zhang, C.; Chen, X. L.; Lin, W. H.; Wei, X. Z.; Huang, Y. H.; Li, J.; Wang, C. Controllable long-term lithium replenishment for enhancing energy density and cycle life of lithium-ion batteries. Energy Environ. Sci. 2024, 17, 1163–1174.

[6]

Wang, Y. Q.; Wu, Z. Z.; Azad, F. M.; Zhu, Y. T.; Wang, L. Z.; Hawker, C. J.; Whittaker, A. K.; Forsyth, M.; Zhang, C. Fluorination in advanced battery design. Nat. Rev. Mater. 2023, 9, 119–133.

[7]

Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972.

[8]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[9]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[10]

Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019, 19, 1504–1511.

[11]

Zhu, P. C.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321.

[12]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[13]

Huang, X. S. Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 2011, 15, 649–662.

[14]

Zuo, L. L.; Ma, Q.; Xiao, P. T.; Guo, Q. P.; Xie, W.; Lu, D.; Yun, X.; Zheng, C.; Chen, Y. Upgrading the separators integrated with desolvation and selective deposition toward the stable lithium metal batteries. Adv. Mater. 2024, 36, 2311529.

[15]

Ding, L. Y.; Yue, X. Y.; Zhang, X. H.; Chen, Y. M.; Liu, J. J.; Shi, Z. Q.; Wang, Z. Y.; Yan, X. Z.; Liang, Z. A polyimine aerogel separator with electron cloud design to boost Li-ion transport for stable Li metal batteries. Proc. Natl. Acad. Sci. USA 2023, 120, e2314264120.

[16]

Zhu, P. C.; Driscoll, E. H.; Dong, B.; Sommerville, R.; Zorin, A.; Slater, P. R.; Kendrick, E. Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries. Green Chem. 2023, 25, 3503–3514.

[17]

Wen, Z. X.; Fang, W. Q.; Wang, F. L.; Kang, H.; Zhao, S. Q.; Guo, S. J.; Chen, G. Dual-salt electrolyte additive enables high moisture tolerance and favorable electric double layer for lithium metal battery. Angew. Chem., Int. Ed. 2024, 63, e202314876.

[18]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[19]

Wu, K.; Ran, P. L.; Wang, B. T.; Wang, F. W.; Zhao, J. K.; Zhao, E. Y. Diffusion-optimized long lifespan 4.6 V LiCoO2: Homogenizing cycled bulk-to-surface Li concentration with reduced structure stress. Adv. Sci. 2024, 11, 2308258.

[20]

Lin, C.; Li, J. Y.; Yin, Z. W.; Huang, W. Y.; Zhao, Q. H.; Weng, Q. S.; Liu, Q.; Sun, J. L.; Chen, G. H.; Pan, F. Structural understanding for high-voltage stabilization of lithium cobalt oxide. Adv. Mater. 2024, 36, 2307404.

[21]

Kim, S.; Lee, J. A.; Lee, D. G.; Son, J.; Bae, T. H.; Lee, T. K.; Choi, N. S. Designing electrolytes for stable operation of high-voltage LiCoO2 in lithium-ion batteries. ACS Energy Lett. 2024, 9, 262–270.

[22]

Chen, W. X.; Muhtar, D.; Li, K. L.; Xiao, G. F.; Cao, J.; Tang, Y. Y.; Qian, G. Y.; Lu, X. Y.; Sun, Y.; Lu, X. Regulating cation disorder triggered-electronic reshuffling for sustainable conventional layered oxide cathodes. Chem. Mater. 2024, 36, 1249–1261.

[23]

Qin, Z. Y.; Zhang, T.; Gao, X. S.; Luo, W. Q.; Han, J. W.; Lu, B. G.; Zhou, J.; Chen, G. Self-reconstruction of highly degraded LiNi0.8Co0.1Mn0.1O2 toward stable single-crystalline cathode. Adv. Mater. 2024, 36, 2307091.

[24]

Wan, H. L.; Wang, Z. Y.; Zhang, W. R.; He, X. Z.; Wang, C. S. Interface design for all-solid-state lithium batteries. Nature 2023, 623, 739–744.

[25]

Pandya, R.; Valzania, L.; Dorchies, F.; Xia, F.; Mc Hugh, J.; Mathieson, A.; Tan, H. J.; Parton, T. G.; Godeffroy, L.; Mazloomian, K. et al. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries. Nat. Nanotechnol. 2023, 18, 1185–1194.

[26]

Klein, S.; Van Wickeren, S.; Röser, S.; Bärmann, P.; Borzutzki, K.; Heidrich, B.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater. 2021, 11, 2003738.

[27]

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

[28]

Syed, M. A.; Salehabadi, M.; Obrovac, M. N. High energy density large particle LiFePO4. Chem. Mater. 2024, 36, 803–814.

[29]

Zhao, X. X.; Wang, X. T.; Guo, J. Z.; Gu, Z. Y.; Cao, J. M.; Yang, J. L.; Lu, F. Q.; Zhang, J. P.; Wu, X. L. Dynamic Li+ capture through ligand-chain interaction for the regeneration of depleted LiFePO4 cathode. Adv. Mater. 2024, 36, 2308927.

[30]

Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457–6498.

[31]

Kim, M. H.; Kim, J.; Choi, S. H.; Wi, T. U.; Choi, A.; Seo, J.; Lim, C. H.; Park, C.; Lee, H. W. Mitigating electrode-level heterogeneity using phosphorus nanolayers on graphite for fast-charging batteries. ACS Energy Lett. 2023, 8, 3962–3970.

[32]

Tu, S. B.; Zhang, B.; Zhang, Y.; Chen, Z. H.; Wang, X. C.; Zhan, R. M.; Ou, Y. T.; Wang, W. Y.; Liu, X. R.; Duan, X. R. et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase. Nat. Energy 2023, 8, 1365–1374.

[33]

Pendashteh, A.; Tomey, R.; Vilatela, J. J. Nanotextile 100% Si anodes for the next generation energy-dense Li-ion batteries. Adv. Energy Mater. 2024, 14, 2304018.

[34]

Kim, N.; Kim, Y.; Sung, J.; Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 2023, 8, 921–933.

[35]

Yan, W. L.; Mu, Z. L.; Wang, Z. X.; Huang, Y. L.; Wu, D. X.; Lu, P. S.; Lu, J. Z.; Xu, J. R.; Wu, Y. J.; Ma, T. H. et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 2023, 8, 800–813.

[36]

Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281.

[37]

Endo, Y.; Yan, X.; Li, M.; Akiyama, R.; Brandl, C.; Liu, J. Z.; Hobara, R.; Hasegawa, S.; Wan, W. S.; Novoselov, K. S. et al. Dynamic topological domain walls driven by lithium intercalation in graphene. Nat. Nanotechnol. 2023, 18, 1154–1161.

[38]

Jamnuch, S.; Pascal, T. A. Electronic signatures of Lorentzian dynamics and charge fluctuations in lithiated graphite structures. Nat. Commun. 2023, 14, 2291.

[39]

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2019, 5, 105–126.

[40]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[41]

Han, Y. Y.; Liu, B.; Xiao, Z.; Zhang, W. K.; Wang, X. L.; Pan, G. X.; Xia, Y.; Xia, X. H.; Tu, J. P. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3, 155–174.

[42]

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

[43]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2017, 3, 16–21.

[44]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[45]

Xie, Y. X.; Huang, Y. X.; Chen, H.; Lin, W. R.; Wu, T. R.; Wang, Y. Q.; Liu, S. S.; Sun, M. L.; Huang, H. Y.; Dai, P. et al. Dual-protective role of PM475: Bolstering anode and cathode stability in lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2310867.

[46]

Kim, M. H.; Wi, T. U.; Seo, J.; Choi, A.; Ko, S.; Kim, J.; Jung, U.; Kim, M. S.; Park, C.; Jin, S. et al. Design principles for fluorinated interphase evolution via conversion-type alloying processes for anticorrosive lithium metal anodes. Nano Lett. 2023, 23, 3582–3591.

[47]

Cao, J. Q.; Shi, Y. S.; Gao, A. S.; Du, G. Y.; Dilxat, M.; Zhang, Y. F.; Cai, M. H.; Qian, G. Y.; Lu, X. Y.; Xie, F. F. et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun. 2024, 15, 1354.

[48]

Zhang, W. R.; Koverga, V.; Liu, S. F.; Zhou, J. G.; Wang, J.; Bai, P. X.; Tan, S.; Dandu, N. K.; Wang, Z. Y.; Chen, F. et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 2024, 9, 386–400.

[49]

Kim, J. T.; Su, H.; Zhong, Y.; Wang, C. Z.; Wu, H. Y.; Zhao, D. Y.; Wang, C. H.; Sun, X. L.; Li, Y. Z. All-solid-state lithium-sulfur batteries through a reaction engineering lens. Nat. Chem. Eng. 2024, 1, 400–410.

[50]

Su, L. L.; Yao, N.; Li, Z.; Bi, C. X.; Chen, Z. X.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Improving rate performance of encapsulating lithium-polysulfide electrolytes for practical lithium-sulfur batteries. Angew. Chem., Int. Ed. 2024, 63, e202318785.

[51]

Zhou, S. Y.; Shi, J.; Liu, S. G.; Li, G.; Pei, F.; Chen, Y. H.; Deng, J. X.; Zheng, Q. Z.; Li, J. Y.; Zhao, C. et al. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 2023, 621, 75–81.

[52]

Zhao, Z. Q.; Pan, Y. K.; Yi, S.; Su, Z.; Chen, H. L.; Huang, Y. N.; Niu, B.; Long, D. H.; Zhang, Y. Y. Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 2024, 36, 2310052.

[53]

Ahn, S.; Zor, C.; Yang, S. X.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A. J.; Pateman, A. et al. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Nat. Chem. 2023, 15, 1022–1029.

[54]

Tian, S. L.; Song, L. N.; Chang, L. M.; Liu, W. Q.; Wang, H. F.; Xu, J. J. A force-assisted Li-O2 battery based on piezoelectric catalysis and band bending of MoS2/Pd cathode. Adv. Energy Mater. 2024, 14, 2303215.

[55]

Zhang, Y.; Zhang, S. T.; Li, H. N.; Lin, Y. R.; Yuan, M. W.; Nan, C. Y.; Chen, C. Tunable oxygen vacancies of cobalt oxides in lithium-oxygen batteries: Morphology control of discharge product. Nano Lett. 2023, 23, 9119–9125.

[56]

Xie, Y. X.; Huang, Y. X.; Zhang, Y. G.; Wu, T. R.; Liu, S. S.; Sun, M. L.; Lee, B.; Lin, Z.; Chen, H.; Dai, P. et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 2023, 14, 2883.

[57]

Zou, Y. G.; Liu, G.; Wang, Y. Q.; Li, Q.; Ma, Z.; Yin, D. M.; Liang, Y.; Cao, Z.; Cavallo, L.; Kim, H. et al. Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature. Adv. Energy Mater. 2023, 13, 2300443.

[58]

Mao, M. L.; Ji, X.; Wang, Q. Y.; Lin, Z. J.; Li, M. Y.; Liu, T.; Wang, C. L.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 2023, 14, 1082.

[59]

Hobold, G. M.; Kim, K. H.; Gallant, B. M. Beneficial vs. inhibiting passivation by the native lithium solid electrolyte interphase revealed by electrochemical Li+ exchange. Energy Environ. Sci. 2023, 16, 2247–2261.

[60]

Zhang, S. H.; Sun, F.; Du, X. F.; Zhang, X. H.; Huang, L.; Ma, J.; Dong, S. M.; Hilger, A.; Manke, I.; Li, L. S. et al. In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries. Energy Environ. Sci. 2023, 16, 2591–2602.

[61]

Kim, S. C.; Oyakhire, S. T.; Athanitis, C.; Wang, J. Y.; Zhang, Z. W.; Zhang, W. B.; Boyle, D. T.; Kim, M. S.; Yu, Z. A.; Gao, X. et al. Data-driven electrolyte design for lithium metal anodes. Proc. Natl. Acad. Sci. USA 2023, 120, e2214357120.

[62]

Cheng, Q.; Chen, Z. X.; Li, X. Y.; Bi, C. X.; Sun, F. R.; Zhang, X. Q.; Ma, X. Z.; Li, B. Q.; Huang, J. Q. Deciphering the degradation mechanism of high-rate and high-energy-density lithium-sulfur pouch cells. Adv. Energy Mater. 2023, 13, 2301770.

[63]

Liang, H. M.; Wang, L.; Song, Y. Z.; Ren, D. S.; Wang, A. P.; Yang, Y.; Xu, H.; Sun, Y. M.; He, X. M. Manipulating Ion transfer and interface stability by a bulk interphase framework for stable lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2303077.

[64]

Aspinall, J.; Chart, Y.; Guo, H.; Shrestha, P.; Burton, M.; Pasta, M. Effect of microstructure on the cycling behavior of Li–In alloy anodes for solid-state batteries. ACS Energy Lett. 2024, 9, 578–585.

[65]

Lu, B. Y.; Cheng, D. Y.; Sreenarayanan, B.; Li, W. K.; Bhamwala, B.; Bao, W.; Meng, Y. S. Key parameters in determining the reactivity of lithium metal battery. ACS Energy Lett. 2023, 8, 3230–3238.

[66]

Yue, L. G.; Wang, X. Y.; Chen, L.; Shen, D. J.; Shao, Z. H.; Wu, H.; Xiao, S. F.; Liang, W. Q.; Yu, Y. J.; Li, Y. Y. In situ interface engineering of highly nitrogen-rich triazine-based covalent organic frameworks for an ultra-stable, dendrite-free lithium-metal anode. Energy Environ. Sci. 2024, 17, 1117–1131.

[67]

Xie, C. Y.; Zhao, C.; Jeong, H.; Li, T. Y.; Li, L. X.; Xu, W. Q.; Yang, Z. Z.; Lin, C.; Liu, Q.; Cheng, L. et al. Suppressing universal cathode crossover in high-energy lithium metal batteries via a versatile interlayer design. Angew. Chem., Int. Ed. 2023, 62, e202217476.

[68]

Zhang, Q. K.; Zhang, X. Q.; Wan, J.; Yao, N.; Song, T. L.; Xie, J.; Hou, L. P.; Zhou, M. Y.; Chen, X.; Li, B. Q. et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 2023, 8, 725–735.

[69]

Sun, Y.; Li, J. C.; Xu, S.; Zhou, H. S.; Guo, S. H. Molecular engineering toward robust solid electrolyte interphase for lithium metal batteries. Adv. Mater. 2024, 36, 2311687.

[70]

Wagner-Henke, J.; Kuai, D. C.; Gerasimov, M.; Röder, F.; Balbuena, P. B.; Krewer, U. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling. Nat. Commun. 2023, 14, 6823.

[71]

Jagger, B.; Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7, 2228–2244.

[72]

Cheng, X. B.; Yang, S. J.; Liu, Z. C.; Guo, J. X.; Jiang, F. N.; Jiang, F.; Xiong, X. S.; Tang, W. B.; Yuan, H.; Huang, J. Q. et al. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 2024, 36, 2307370.

[73]

Xia, Y. C.; Zhou, P.; Kong, X.; Tian, J. K.; Zhang, W. L.; Yan, S. S.; Hou, W. H.; Zhou, H. Y.; Dong, H.; Chen, X. X. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 2023, 8, 934–945.

[74]

Zhang, Q. C.; Xu, L.; Yue, X. Y.; Liu, J. J.; Wang, X.; He, X. Y.; Shi, Z. D.; Niu, S.; Gao, W.; Cheng, C. et al. Catalytic current collector design to accelerate LiNO3 decomposition for high-performing lithium metal batteries. Adv. Energy Mater. 2023, 13, 2302620.

[75]

Molaiyan, P.; Abdollahifar, M.; Boz, B.; Beutl, A.; Krammer, M.; Zhang, N. X.; Tron, A.; Romio, M.; Ricci, M.; Adelung, R. et al. Optimizing current collector interfaces for efficient “anode-free” lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2311301.

[76]

Guan, W. Q.; Wang, T.; Liu, Y. H.; Du, H. F.; Li, S. Y.; Du, Z. Z.; Ai, W. Impact of morphological dimensions in carbon-based interlayers on lithium metal anode stabilization. Adv. Energy Mater. 2023, 13, 2302565.

[77]

Xiao, P. T.; Yun, X. R.; Chen, Y. F.; Guo, X. W.; Gao, P.; Zhou, G. M.; Zheng, C. M. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 2023, 52, 5255–5316.

[78]

Kim, S. C.; Wang, J. Y.; Xu, R.; Zhang, P.; Chen, Y. L.; Huang, Z. J.; Yang, Y. F.; Yu, Z. A.; Oyakhire, S. T.; Zhang, W. B. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 2023, 8, 814–826.

[79]

Wang, Y. D.; Ke, S. W.; Qiao, G. F.; Liang, J. C.; Zhou, X. C.; Song, X. M.; Tie, Z.; Yuan, S.; Zuo, J. L.; Jin, Z. Self-assembled lithiophilic interface with abundant nickel-bis (dithiolene) sites enabling highly durable and dendrite-free lithium metal batteries. Adv. Energy Mater. 2024, 14, 2303051.

[80]

Deng, L. Q.; Dong, L. T.; Wang, Z. F.; Liu, Y.; Zhan, J.; Wang, S. H.; Song, K. P.; Qi, D. Q.; Sang, Y. H.; Liu, H. et al. Asymmetrically-fluorinated electrolyte molecule design for simultaneous achieving good solvation and high inertness to enable stable lithium metal batteries. Adv. Energy Mater. 2024, 14, 2303652.

[81]

Meng, Y. F.; Zhou, D.; Liu, R. L.; Tian, Y.; Gao, Y. F.; Wang, Y.; Sun, B.; Kang, F. Y.; Armand, M.; Li, B. H. et al. Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 2023, 8, 1023–1033.

[82]

Kwon, H.; Kim, H.; Hwang, J.; Oh, W.; Roh, Y.; Shin, D.; Kim, H. T. Borate-pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 2023, 9, 57–69.

[83]

Fang, S.; Wu, F. L.; Zhao, S. Q.; Zarrabeitia, M.; Kim, G. T.; Kim, J. K.; Zhou, N. G.; Passerini, S. Adaptive multi-site gradient adsorption of siloxane-based protective layers enable high performance lithium-metal batteries. Adv. Energy Mater. 2023, 13, 2302577.

[84]

Cheng, Y. F.; Wang, Z. J.; Chen, J. B.; Chen, Y. M.; Ke, X.; Wu, D. J.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Gu, M. et al. Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA·cm−2 and 20 mAh·cm−2. Angew. Chem., Int. Ed. 2023, 62, e202305723.

[85]

Huang, Z. J.; Lai, J. C.; Liao, S. L.; Yu, Z. A.; Chen, Y. L.; Yu, W. L.; Gong, H. X.; Gao, X.; Yang, Y. F.; Qin, J. et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes. Nat. Energy 2023, 8, 577–585.

[86]

Peled, E.; Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

[87]

Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

[88]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

[89]

Banerjee, A.; Wang, X. F.; Fang, C. C.; Wu, E. A.; Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 2020, 120, 6878–6933.

[90]

Xu, L.; Tang, S.; Cheng, Y.; Wang, K. Y.; Liang, J. Y.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Interfaces in solid-state lithium batteries. Joule 2018, 2, 1991–2015.

[91]

Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 2019, 9, 1902254.

[92]

Xiang, Y. X.; Tao, M. M.; Zhong, G. M.; Liang, Z. T.; Zheng, G. R.; Huang, X.; Liu, X. S.; Jin, Y. T.; Xu, N. B.; Armand, M. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 2021, 7, eabj3423.

[93]

Xu, S. S.; Chen, K. H.; Dasgupta, N. P.; Siegel, J. B.; Stefanopoulou, A. G. Evolution of dead lithium growth in lithium metal batteries: Experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 2019, 166, A3456–A3463.

[94]

Sayavong, P.; Zhang, W. B.; Oyakhire, S. T.; Boyle, D. T.; Chen, Y. L.; Kim, S. C.; Vilá, R. A.; Holmes, S. E.; Kim, M. S.; Bent, S. F. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 2023, 145, 12342–12350.

[95]

Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

[96]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[97]

Liu, B.; Zhang, Y.; Wang, Z. L.; Ai, C. Z.; Liu, S. F.; Liu, P.; Zhong, Y.; Lin, S. W.; Deng, S. J.; Liu, Q. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003657.

[98]

Zhang, X. D.; Guo, Z. A.; Li, X.; Liu, Q. N.; Hu, H.; Li, F. Y.; Huang, Q.; Zhang, L. Q.; Tang, Y. F.; Huang, J. Y. Cryo-ultramicrotomy enables TEM characterization of global lithium/polymer interfaces. Energy Environ. Sci. 2024, 17, 1436–1447.

[99]

Hobold, G. M.; Gallant, B. M. Quantifying capacity loss mechanisms of Li metal anodes beyond inactive Li0. ACS Energy Lett. 2022, 7, 3458–3466.

[100]

Yuan, X. T.; Liu, B.; Mecklenburg, M.; Li, Y. Z. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. Nature 2023, 620, 86–91.

[101]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[102]

Sun, K.; Cao, C. T.; Zhao, D. Y.; Tong, X.; Bak, S. M.; Du, Y. H.; Wang, F.; Steingart, D. A. Degradation of lithium iron phosphate sulfide solid-state batteries by conductive interfaces. J. Phys. Chem. C 2023, 127, 19396–19405.

[103]

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

[104]

Liu, Y. H.; Li, Y. F.; Du, Z. Z.; He, C.; Bi, J. X.; Li, S. Y.; Guan, W. Q.; Du, H. F.; Ai, W. Integrated gradient Cu current collector enables bottom–up Li growth for Li metal anodes: Role of interfacial structure. Adv. Sci. 2023, 10, 2301288.

[105]

Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

[106]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[107]

Xue, P.; Liu, S. R.; Shi, X. L.; Sun, C.; Lai, C.; Zhou, Y.; Sui, D.; Chen, Y. S.; Liang, J. J. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 2018, 30, 1804165.

[108]

Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094–1099.

[109]

Todeschini, M.; Da Silva Fanta, A. B.; Jensen, F.; Wagner, J. B.; Han, A. P. Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 2017, 9, 37374–37385.

[110]

Chen, X. R.; Chen, X.; Yan, C.; Zhang, X. Q.; Zhang, Q.; Huang, J. Q. Role of lithiophilic metal sites in lithium metal anodes. Energy Fuels 2021, 35, 12746–12752.

[111]

Chen, X. R.; Li, B. Q.; Zhao, C. X.; Zhang, R.; Zhang, Q. Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes. Small Methods 2020, 4, 1900177.

[112]

Ma, J. J.; Yang, J. L.; Wu, C.; Huang, M.; Zhu, J. W.; Zeng, W. H.; Li, L.; Li, P.; Zhao, X.; Qiao, F. et al. Stabilizing nucleation seeds in Li metal anode via ion-selective graphene oxide interfaces. Energy Storage Mater. 2023, 56, 572–581.

[113]

Wang, Y. X.; Liu, Y. J.; Nguyen, M.; Cho, J.; Katyal, N.; Vishnugopi, B. S.; Hao, H. C.; Fang, R. Y.; Wu, N.; Liu, P. C. et al. Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 2023, 35, 2206762.

[114]

Sandoval, S. E.; Lewis, J. A.; Vishnugopi, B. S.; Nelson, D. L.; Schneider, M. M.; Cortes, F. J. Q.; Matthews, C. M.; Watt, J.; Tian, M. K.; Shevchenko, P. et al. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries. Joule 2023, 7, 2054–2073.

[115]

Li, Q. W.; Liu, Y. L.; Zhang, Z. H.; Chen, J. J.; Yang, Z. L.; Deng, Q. B.; Mumyatov, A. V.; Troshin, P. A.; He, G.; Hu, N. Construction of dynamic alloy interfaces for uniform Li deposition in Li-metal batteries. Energy Environ. Mater. 2024, 7, e12618.

[116]

He, R. H.; Wang, Y. T.; Zhang, C. Y.; Liu, Z. H.; He, P.; Hong, X. F.; Yu, R. H.; Zhao, Y.; Wu, J. S.; Zhou, L. et al. Sequential and dendrite-free Li plating on Cu foil enabled by an ultrathin yolk–shell SiO x /C@C layer. Adv. Energy Mater. 2023, 13, 2204075.

[117]

Li, B. Q.; Chen, X. R.; Chen, X.; Zhao, C. X.; Zhang, R.; Cheng, X. B.; Zhang, Q. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 2019, 4608940.

[118]

Zou, P. C.; Wang, C. Y.; Qin, J. Y.; Zhang, R.; Xin, H. L. A reactive wetting strategy improves lithium metal reversibility. Energy Storage Mater. 2023, 58, 176–183.

[119]

Liu, L.; Wang, J. H. Overcoming copper substrate thermodynamic limitations in anode-free lithium pouch cells via in situ seed implantation. Nano Lett. 2023, 23, 10251–10258.

[120]

Wang, J. P.; Lang, F.; Li, Q. In situ tailoring solid electrolyte interphase of three-dimensional Li metal electrode for enhanced Coulombic efficiency. EcoMat 2023, 5, e12354.

[121]

Zhang, W. D.; Fan, Q. X.; Zhang, D. M.; Liu, L. H.; Liu, S.; Fang, Z. Y.; Li, W.; Li, X. D.; Li, M. C. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries. Nano Energy 2022, 102, 107677.

[122]

Wu, Z. H.; Wang, C. Y.; Hui, Z. Y.; Liu, H. D.; Wang, S.; Yu, S. C.; Xing, X.; Holoubek, J.; Miao, Q. S.; Xin, H. L. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 2023, 8, 340–350.

[123]

Kim, S.; Park, G.; Lee, S. J.; Seo, S.; Ryu, K.; Kim, C. H.; Choi, J. W. Lithium-metal batteries: From fundamental research to industrialization. Adv. Mater. 2023, 35, 2206625.

[124]

Oyakhire, S. T.; Zhang, W. B.; Shin, A.; Xu, R.; Boyle, D. T.; Yu, Z. A.; Ye, Y. S.; Yang, Y. F.; Raiford, J. A.; Huang, W. et al. Electrical resistance of the current collector controls lithium morphology. Nat. Commun. 2022, 13, 3986.

[125]

Hu, Y. H.; Li, H.; Chen, Z. D.; Cen, W. L.; Wang, Q.; Chen, Y. G.; Davoodi, A.; Liu, W. Li-alloy texture creates in-built Li (110) epitaxy in a thin Li-metal anode allowing high depth-of-discharge cycling in carbonate electrolyte. Chem. Eng. J. 2023, 466, 143084.

[126]
Kim, M. H.; Kim, D. Y.; Li, Y. Q.; Seo, J.; Kim, J.; Kim, M. S.; Kim, M.; Kim, T.; Jung, U.; Park, S. W. et al. A single-crystal copper (111) current collector for anode-free lithium batteries [Online]. 2022. https://chemrxiv.org/engage/chemrxiv/article-details/63949e6704bc6663b910730b (accessed Apr 1, 2024).
[127]

Zhang, Y. H.; Zhao, P. Y.; Nie, Q. N.; Li, Y.; Guo, R.; Hong, Y. F.; Deng, J. K.; Song, J. X. Enabling 420 Wh·kg−1 stable lithium-metal pouch cells by lanthanum doping. Adv. Mater. 2023, 35, 2211032.

[128]

Lai, G. M.; Jiao, J. Y.; Fang, C.; Jiang, Y.; Sheng, L. Y.; Xu, B.; Ouyang, C. Y.; Zheng, J. X. The mechanism of Li deposition on the cu substrates in the anode-free Li metal batteries. Small 2023, 19, 2205416.

[129]

Ishikawa, K.; Ito, Y.; Harada, S.; Tagawa, M.; Ujihara, T. Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors. Cryst. Growth Des. 2017, 17, 2379–2385.

[130]

Ishikawa, K.; Harada, S.; Tagawa, M.; Ujihara, T. Effect of crystal orientation of Cu current collectors on cycling stability of Li metal anodes. ACS Appl. Mater. Interfaces 2020, 12, 9341–9346.

[131]

Kim, Y. J.; Kwon, S. H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H. S.; Lee, J.; Zhang, J. G.; Lee, S. G.; Guim, H. et al. Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Mater. 2019, 19, 154–162.

[132]

Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

[133]

Luo, P.; Wolf, S. E.; Govind, S.; Stephens, R. B.; Kim, D. H.; Chen, C. Y.; Nguyen, T.; Wąsik, P.; Zhernenkov, M.; McClimon, B. et al. High-density stable glasses formed on soft substrates. Nat. Mater. 2024, 23, 688–694.

[134]

Wang, X.; Zeng, W.; Hong, L.; Xu, W. W.; Yang, H. K.; Wang, F.; Duan, H. G.; Tang, M.; Jiang, H. Q. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 2018, 3, 227–235.

[135]

Oh, J.; Choi, S. H.; Kim, J. Y.; Lee, J.; Lee, T.; Lee, N.; Lee, T.; Sohn, Y.; Chung, W. J.; Bae, K. Y. et al. Anode-less all-solid-state batteries operating at room temperature and low pressure. Adv. Energy Mater. 2023, 13, 2301508.

[136]

Tang, Y. P.; Shen, K.; Lv, Z. Y.; Xu, X.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q.; Deng, Y. D. Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. J. Power Sources 2018, 403, 82–89.

[137]

Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim. Acta 1998, 43, 1569–1574.

[138]

Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

[139]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[140]

Ingber, T. T. K.; Bela, M. M.; Püttmann, F.; Dohmann, J. F.; Bieker, P.; Börner, M.; Winter, M.; Stan, M. C. Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries. J. Mater. Chem. A 2023, 11, 17828–17840.

[141]

Zhang, W. Y.; Li, J. L.; Chen, H. X.; Jin, H. X.; Li, P.; Zhang, Y. J.; Xu, C.; Zhao, S. M.; Du, Y. Q.; Zhang, J. X. Natural template-derived 3D porous current collector for dendrite-free lithium metal battery. Nano 2020, 15, 2050033.

[142]

Wang, Y. Y.; Wang, Z. J.; Lei, D. N.; Lv, W.; Zhao, Q.; Ni, B.; Liu, Y.; Li, B. H.; Kang, F. Y.; He, Y. B. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl. Mater. Interfaces 2018, 10, 20244–20249.

[143]

Umh, H. N.; Park, J.; Yeo, J.; Jung, S.; Nam, I.; Yi, J. Lithium metal anode on a copper dendritic superstructure. Electrochem. Commun. 2019, 99, 27–31.

[144]

Adair, K. R.; Iqbal, M.; Wang, C. H.; Zhao, Y.; Banis, M. N.; Li, R. Y.; Zhang, L.; Yang, R.; Lu, S. G.; Sun, X. L. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy 2018, 54, 375–382.

[145]

Lin, K.; Xu, X. F.; Qin, X. Y.; Zhang, G. Q.; Liu, M.; Lv, F. Z.; Xia, Y.; Kang, F. Y.; Chen, G. H.; Li, B. H. Restructured rimous copper foam as robust lithium host. Energy Storage Mater. 2020, 26, 250–259.

[146]

Park, S. K.; Copic, D.; Zhao, T. Z.; Rutkowska, A.; Wen, B.; Sanders, K.; He, R. H.; Kim, H. K.; De Volder, M. 3D porous Cu-composites for stable Li-metal battery anodes. ACS Nano 2023, 17, 14658–14666.

[147]

Yang, I.; Jeong, J. H.; Seok, J. Y.; Kim, S. Structurally tailored hierarchical Cu current collector with selective inward growth of lithium for high-performance lithium metal batteries. Adv. Energy Mater. 2023, 13, 2202321.

[148]

Liu, H.; Wang, E. R.; Zhang, Q.; Ren, Y. B.; Guo, X. W.; Wang, L.; Li, G. Y.; Yu, H. J. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 2019, 17, 253–259.

[149]

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

[150]

Wu, S. L.; Jiao, T. P.; Yang, S. R.; Liu, B.; Zhang, W. J.; Zhang, K. L. Lithiophilicity conversion of the Cu surface through facile thermal oxidation: Boosting a stable Li–Cu composite anode through melt infusion. J. Mater. Chem. A 2019, 7, 5726–5732.

[151]

Fan, H. L.; Gao, C. H.; Dong, Q. Y.; Hong, B.; Fang, Z.; Hu, M. Y.; Lai, Y. Q. Silver sites guide spatially homogeneous plating of lithium metal in 3D host. J. Electroanal. Chem. 2018, 824, 175–180.

[152]

Li, Z. H.; He, Q.; Zhou, C.; Li, Y.; Liu, Z. H.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Rationally design lithiophilic surfaces toward high-energy Lithium metal battery. Energy Storage Mater. 2021, 37, 40–46.

[153]

Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano 2022, 16, 17729–17760.

[154]

Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 14207–14211.

[155]

Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54.

[156]

Liu, S.; Wang, A. X.; Li, Q. Q.; Wu, J. S.; Chiou, K.; Huang, J. X.; Luo, J. Y. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184–193.

[157]

Zhang, F.; Liu, P.; Tian, Y.; Wu, J. F.; Wang, X. W.; Li, H. L.; Liu, X. Y. Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes. J. Mater. Chem. A 2022, 10, 1463–1472.

[158]

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

[159]

Wang, H. S.; Li, Y. Z.; Li, Y. B.; Liu, Y. Y.; Lin, D. C.; Zhu, C.; Chen, G. X.; Yang, A. K.; Yan, K.; Chen, H. et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 2019, 19, 1326–1335.

[160]

Song, W. X.; Cui, S. Q.; Zhang, J. J.; Fan, S. Z.; Chen, L. L.; Zhang, H. M.; Zhang, Y. T.; Meng, X. M. Three-dimensional carbon foam modified with Mg3N2 for ultralong cyclability of a dendrite-free Li metal anode. ACS Appl. Mater. Interfaces 2023, 15, 9421–9430.

[161]

Yang, T. Y.; Li, L.; Zhao, T.; Ye, Y. S.; Ye, Z. Q.; Xu, S. N.; Wu, F.; Chen, R. J. From flower-like to spherical deposition: A GCNT aerogel scaffold for fast-charging lithium metal batteries. Adv. Energy Mater. 2021, 11, 2102454.

[162]

Pan, D.; Zhao, C. L.; Qi, X. G.; Liu, L. L.; Rong, X. H.; Sun, S. W.; Lu, Y. X.; Bai, Y.; Hu, Y. S. Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Mater. 2022, 50, 407–416.

[163]

Acebedo, B.; Morant-Miñana, M. C.; Gonzalo, E.; De Larramendi, I. R.; Villaverde, A.; Rikarte, J.; Fallarino, L. Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 2023, 13, 2203744.

[164]

Boyle, D. T.; Kim, S. C.; Oyakhire, S. T.; Vilá, R. A.; Huang, Z. J.; Sayavong, P.; Qin, J.; Bao, Z. N.; Cui, Y. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 2022, 144, 20717–20725.

[165]

Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

[166]

Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889–6896.

[167]

Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

[168]

Zhou, S.; Zhang, Y. F.; Chai, S. M.; Usman, I.; Qiao, Y.; Luo, S. Z.; Xie, X. F.; Chen, J.; Liang, S. Q.; Pan, A. Q. et al. Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chem. Eng. J. 2021, 404, 126508.

[169]

Kim, S.; Lee, J. A.; Lee, T. K.; Baek, K.; Kim, J.; Kim, B.; Byun, J. H.; Lee, H. W.; Kang, S. J.; Choi, J. A. et al. Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ. Sci. 2023, 16, 5108–5122.

[170]

Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.

[171]

Wang, Q. D.; Zhao, C. L.; Wang, S. W.; Wang, J. L.; Liu, M.; Ganapathy, S.; Bai, X. D.; Li, B. H.; Wagemaker, M. Clarifying the relationship between the lithium deposition coverage and microstructure in lithium metal batteries. J. Am. Chem. Soc. 2022, 144, 21961–21971.

[172]

Chen, Y. W.; Li, M. H.; Liu, Y.; Jie, Y. L.; Li, W. X.; Huang, F. Y.; Li, X. P.; He, Z. X.; Ren, X. D.; Chen, Y. H. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 2023, 14, 2655.

[173]

Aarts, M.; Patnaik, S. G.; Van Roy, T.; Sergeant, S.; Debucquoy, M.; Vereecken, P. M. Water as additive directing lithium electrodeposition. ACS Energy Lett. 2024, 9, 513–519.

[174]

Zhang, X. Z.; Xu, P.; Duan, J. N.; Lin, X. D.; Sun, J. J.; Shi, W. J.; Xu, H. W.; Dou, W. J.; Zheng, Q. Y.; Yuan, R. M. et al. A dicarbonate solvent electrolyte for high performance 5 V-class lithium-based batteries. Nat. Commun. 2024, 15, 536.

[175]

Zeng, H. P.; Yu, K.; Li, J. W.; Yuan, M. M.; Wang, J. J.; Wang, Q. R.; Lai, A. J.; Jiang, Y. D.; Yan, X.; Zhang, G. Z. et al. Beyond LiF: Tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS Nano 2024, 18, 1969–1981.

[176]

Lu, Y.; Zhang, W. L.; Liu, S. Z.; Cao, Q. B.; Yan, S. S.; Liu, H.; Hou, W. H.; Zhou, P.; Song, X.; Ou, Y. et al. Tuning the Li+ solvation structure by a “bulky coordinating” strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries. ACS Nano 2023, 17, 9586–9599.

[177]

Cheng, L. W.; Wang, Y. Y.; Yang, J.; Tang, M. Y.; Zhang, C. G.; Zhu, Q. N.; Wang, S. C.; Li, Y. T.; Hu, P. F.; Wang, H. An ultrafast and stable Li-metal battery cycled at −40 °C. Adv. Funct. Mater. 2023, 33, 2212349.

[178]

Ma, T.; Ni, Y. X.; Wang, Q. R.; Xiao, J.; Huang, Z. X.; Tao, Z. L.; Chen, J. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Mater. 2022, 52, 69–75.

[179]

Boyle, D. T.; Li, Y. Z.; Pei, A.; Vilá, R. A.; Zhang, Z. W.; Sayavong, P.; Kim, M. S.; Huang, W.; Wang, H. X.; Liu, Y. Z. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 2022, 22, 8224–8232.

[180]

Zhu, J. Q.; Cui, Z.; Wang, H.; Zhang, L. J.; Liu, Q.; Lu, A. J.; Ji, T.; Hu, J. Q.; Luo, W.; Zou, R. J. A protection route based on the dual-mode transfer of lithium ions for lithiophilic site during the nucleation period. Adv. Energy Mater. 2023, 13, 2302687.

[181]

Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 2019, 4, 683–689.

[182]

Kazyak, E.; Wang, M. J.; Lee, K.; Yadavalli, S.; Sanchez, A. J.; Thouless, M. D.; Sakamoto, J.; Dasgupta, N. P. Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter 2022, 5, 3912–3934.

[183]

Fincher, C. D.; Athanasiou, C. E.; Gilgenbach, C.; Wang, M.; Sheldon, B. W.; Carter, W. C.; Chiang, Y. M. Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 2022, 6, 2794–2809.

[184]

Yin, X. S.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 2018, 50, 659–664.

[185]

Lee, H.; Chen, S. R.; Ren, X. D.; Martinez, A.; Shutthanandan, V.; Vijayakumar, M.; Han, K. S.; Li, Q. Y.; Liu, J.; Xu, W. et al. Electrode edge effects and the failure mechanism of lithium-metal batteries. ChemSusChem 2018, 11, 3821–3828.

[186]

Kim, H.; Lee, S. H.; Kim, J. M.; Yoon, C. S.; Sun, Y. K. High-energy-density, long-life Li-metal batteries via application of external pressure. ACS Energy Lett. 2023, 8, 2970–2978.

[187]

Fang, C. C.; Lu, B. Y.; Pawar, G.; Zhang, M. H.; Cheng, D. Y.; Chen, S. R.; Ceja, M.; Doux, J. M.; Musrock, H.; Cai, M. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 2021, 6, 987–994.

[188]

Kalnaus, S.; Dudney, N. J.; Westover, A. S.; Herbert, E.; Hackney, S. Solid-state batteries: The critical role of mechanics. Science 2023, 381, eabg5998.

[189]

Lee, C.; Kim, J. Y.; Bae, K. Y.; Kim, T.; Jung, S. J.; Son, S.; Lee, H. W. Enhancing electrochemomechanics: How stack pressure regulation affects all-solid-state batteries. Energy Storage Mater. 2024, 66, 103196.

[190]

Qin, J. L.; Pei, F.; Wang, R.; Wu, L.; Han, Y.; Xiao, P.; Shen, Y.; Yuan, L. X.; Huang, Y. H.; Wang, D. L. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh·kg−1 lithium metal batteries. Adv. Mater. 2024, 36, 2312773.

[191]

Lin, L.; Yue, K.; Xia, L.; Yan, X. L.; Zheng, H. F.; Zhang, Y. G.; Sa, B.; Li, J. J.; Wang, L. S.; Lin, J. et al. Tailoring Li deposition by regulating structural connectivity of electrochemical Li reservoir in Li-metal batteries. Angew. Chem., Int. Ed. 2024, 63, e202319847.

[192]

Park, H.; Jeon, Y.; Chung, W. J.; Bae, Y.; Kim, J.; Baek, H.; Park, J. Early stage Li plating by liquid phase and cryogenic transmission electron microscopy. ACS Energy Lett. 2023, 8, 715–721.

[193]

Wang, C. Y.; Lin, R. Q.; He, Y. B.; Zou, P. C.; Kisslinger, K.; He, Q.; Li, J.; Xin, H. L. Tension-induced cavitation in Li-metal stripping. Adv. Mater. 2023, 35, 2209091.

[194]

Sun, Z. H.; Wang, Y. K.; Shen, S. Y.; Li, X. Y.; Hu, X. F.; Hu, M. Y.; Su, Y. Q.; Ding, S. J.; Xiao, C. H. Directing (110) oriented lithium deposition through high-flux solid electrolyte interphase for dendrite-free lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202309622.

[195]

Zhao, Y.; Ye, H. L.; Zhang, H. Y.; Zhao, D.; Huang, L. M.; Lee, J. Y. The beneficial effects of black phosphorous modification of the anode current collector in Li-metal free Li2S-based batteries. Mater. Today Energy 2022, 30, 101179.

[196]

Wi, T. U.; Park, S. O.; Yeom, S. J.; Kim, M. H.; Kristanto, I.; Wang, H. T.; Kwak, S. K.; Lee, H. W. Revealing the dual-layered solid electrolyte interphase on lithium metal anodes via cryogenic electron microscopy. ACS Energy Lett. 2023, 8, 2193–2200.

[197]

Zhang, D.; Dai, A.; Wu, M.; Shen, K.; Xiao, T.; Hou, G. Y.; Lu, J.; Tang, Y. P. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2020, 5, 180–186.

[198]

Liu, F.; Xu, R.; Wu, Y. C.; Boyle, D. T.; Yang, A. K.; Xu, J. W.; Zhu, Y. Y.; Ye, Y. S.; Yu, Z. A.; Zhang, Z. W. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 2021, 600, 659–663.

[199]

Han, Y. H.; Jie, Y. L.; Huang, F. Y.; Chen, Y. W.; Lei, Z. W.; Zhang, G. Q.; Ren, X. D.; Qin, L. J.; Cao, R. G.; Jiao, S. H. Enabling stable lithium metal anode through electrochemical kinetics manipulation. Adv. Funct. Mater. 2019, 29, 1904629.

[200]

Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.

[201]

Li, Y. J.; Mao, E. Y.; Min, Z. W.; Cai, Z.; Chen, Z. H.; Fu, L.; Duan, X. R.; Wang, L. Y.; Zhang, C.; Lu, Z. H. et al. Hybrid polymer-alloy-fluoride interphase enabling fast ion transport kinetics for low-temperature lithium metal batteries. ACS Nano 2023, 17, 19459–19469.

[202]

Tao, M. M.; Chen, X. X.; Lin, H. X.; Jin, Y. T.; Shan, P. Z.; Zhao, D. H.; Gao, M. B.; Liang, Z. T.; Yang, Y. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries. ACS Nano 2023, 17, 24104–24114.

[203]

Heenan, T. M. M.; Mombrini, I.; Llewellyn, A.; Checchia, S.; Tan, C.; Johnson, M. J.; Jnawali, A.; Garbarino, G.; Jervis, R.; Brett, D. J. L. et al. Mapping internal temperatures during high-rate battery applications. Nature 2023, 617, 507–512.

Nano Research
Pages 8706-8728
Cite this article:
Wang T-Y, Zhao D, Liang K, et al. Li-current collector interface in lithium metal batteries. Nano Research, 2024, 17(10): 8706-8728. https://doi.org/10.1007/s12274-024-6853-5
Topics:
Part of a topical collection:

455

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 April 2024
Revised: 25 June 2024
Accepted: 01 July 2024
Published: 24 July 2024
© Tsinghua University Press 2024
Return