The photochemical and photophysical properties of near-infrared (NIR) dyes are significantly influenced by their aggregation state and mesoscopic morphology. However, beyond chemical synthesis, the regulation mechanisms for the properties of NIR dyes, particularly with respect to photothermal properties of the aggregates, are not yet fully understood. Here, we investigate the photothermal behaviors of croconaine-based (CroA) NIR dyes containing dipeptide or amino acids moieties. The introduction of hydrogen bonding promotes π–π stacking of croconaine center, which can efficiently regulate aggregation states and assembly structures in isopropanol. Under laser irradiation, CroA aggregates undergo aggregation-dissociation transition, the in-situ monomer generation process regulates two parameters of photothermal performance: heating rates and plateau photothermal temperatures. This study reveals the regulation effect of non-covalent bonding interactions on CroA aggregates, highlighting supramolecular assembly strategy not only facilitates to construct of photothermal nanomaterials with well-defined structures, but also provides an alternative and effective method for regulating photothermal performance of NIR dyes.
Ran, X. Y.; Chen, P.; Liu, Y. Z.; Shi, L.; Chen, X.; Liu, Y. H.; Zhang, H.; Zhang, L. N.; Li, K.; Yu, X. Q. Rational design of polymethine dyes with nir-ii emission and high photothermal conversion efficiency for multimodal-imaging-guided photo-immunotherapy. Adv. Mater. 2023, 35, 2210179.
Li, T. W.; Li, C. Y.; Ruan, Z.; Xu, P. P.; Yang, X. H.; Yuan, P.; Wang, Q. B.; Yan, L. F. Polypeptide-conjugated second near-infrared organic fluorophore for image-guided photothermal therapy. ACS Nano 2019, 13, 3691–3702.
St. Lorenz, A; Buabeng, E. R.; Taratula, O.; Taratula, O.; Henary, M. Near-infrared heptamethine cyanine dyes for nanoparticle-based photoacoustic imaging and photothermal therapy. J. Med. Chem. 2021, 64, 8798–8805.
Yuan, Z.; Lin, C. C.; He, Y.; Tao, B. L.; Chen, M. W.; Zhang, J. X.; Liu, P.; Cai, K. Y. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano 2020, 14, 3546–3562.
Liu, P.; Gao, F.; Zhou, L. N.; Chen, Y.; Chen, Z. J. Tetrathienyl-functionalized red- and NIR-absorbing BODIPY dyes appending various peripheral substituents. Org. Biomol. Chem. 2017, 15, 1393–1399.
Meier, H.; Gerold, J.; Kolshorn, H.; Mühling, B. Extension of conjugation leading to bathochromic or hypsochromic effects in OPV series. Chem.—Eur. J. 2004, 10, 360–370.
Moonen, N. N. P.; Pomerantz, W. C.; Gist, R.; Boudon, C.; Gisselbrecht, J. P.; Kawai, T.; Kishioka, A.; Gross, M.; Irie, M.; Diederich, F. Donor-substituted cyanoethynylethenes: π-conjugation and band-gap tuning in strong charge-transfer chromophores. Chem.—Eur. J. 2005, 11, 3325–3341.
Sasaki, Y.; Yanai, N.; Kimizuka, N. Osmium complex-chromophore conjugates with both singlet-to-triplet absorption and long triplet lifetime through tuning of the heavy-atom effect. Inorg. Chem. 2022, 61, 5982–5990.
Iwanaga, T.; Asano, N.; Yamada, H.; Toyota, S. Synthesis and photophysical properties of dinaphtho[2,3- b: 2',3'- i]dihydrophenazine derivatives. Tetrahedron Lett. 2019, 60, 1113–1116.
Fuse, S.; Oishi, T.; Matsumura, K.; Hayashi, Y.; Kawauchi, S.; Nakamura, H. Design, synthesis, and evaluation of azo D–π–A dyes as photothermal agents. Org. Biomol. Chem. 2020, 18, 93–101.
Chen, S. Y.; Pan, Y. H.; Chen, K.; Chen, P. F.; Shen, Q. M.; Sun, P. F.; Hu, W. B.; Fan, Q. L. Increasing molecular planarity through donor/side-chain engineering for improved NIR-IIa fluorescence imaging and NIR-II photothermal therapy under 1064 nm. Angew. Chem., Int. Ed. 2023, 62, e202215372.
Shukla, V. K.; Chakraborty, G.; Ray, A. K.; Nagaiyan, S. Red and NIR emitting ring-fused BODIPY/aza-BODIPY dyes. Dyes Pigm. 2023, 215, 111245.
Wang, Z.; Liu, Y.; He, C. X.; Zhang, X. M.; Li, X.; Li, Y. Y.; Tang, Y. F.; Lu, X. M.; Fan, Q. L. Small-molecule phototheranostic agent with extended π-conjugation for efficient NIR-II photoacoustic-imaging-guided photothermal therapy. Small 2024, 20, 2307829.
Cheng, W. Y.; Chen, H. T.; Liu, C.; Ji, C. D.; Ma, G. P.; Yin, M. Z. Functional organic dyes for health-related applications. View 2020, 1, 20200055.
Rong, X.; Xia, X.; Wang, R.; Su, Z. H.; Liu, T.; Zhang, Z. W.; Long, S. R.; Du, J. J.; Fan, J. L.; Sun, W. et al. Near-infrared and highly photostable squaraine-based nanoparticles for photoacoustic imaging guided photothermal therapy. Dyes Pigm. 2023, 211, 111055.
Gao, D. Y.; Luo, Z. C.; He, Y.; Yang, L. X.; Hu, D. H.; Liang, Y. Y.; Zheng, H. R.; Liu, X. G.; Sheng, Z. H. Low-dose NIR-II preclinical bioimaging using liposome-encapsulated cyanine dyes. Small 2023, 19, 2206544.
Cheng, L.; He, W. W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z. P.; Liu, Z. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater. 2013, 23, 5893–5902.
Zhang, J. X.; Liu, S.; Hu, X. L.; Xie, Z. G.; Jing, X. B. Cyanine-curcumin assembling nanoparticles for near-infrared imaging and photothermal therapy. ACS Biomater. Sci. Eng. 2016, 2, 1942–1950.
Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Wang, M. Q.; Zhang, H. Y.; Wang, P. F. Biocompatible iron phthalocyanine-albumin assemblies as photoacoustic and thermal theranostics in living mice. ACS Appl. Mater. Interfaces 2017, 9, 21124–21132.
Dang, H. P.; Yin, D. L.; Tian, Y. L.; Cheng, Q.; Teng, C. C.; Xu, Y. X.; Yan, L. F. In situ formation of J-aggregate in the tumor microenvironment using acidity responsive polypeptide nanoparticle encapsulating galactose-conjugated BODIPY dye for NIR-II phototheranostics. J. Mater. Chem. B 2022, 10, 5279–5290.
Wu, L.; Fang, S. T.; Shi, S.; Deng, J. Z.; Liu, B.; Cai, L. T. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013, 14, 3027–3033.
Zhao, L. Y.; Liu, Y. M.; Chang, R.; Xing, R. R.; Yan, X. H. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv. Funct. Mater. 2019, 29, 1806877.
Li, Z.; Sun, L.; Zhang, Y. F.; Dove, A. P.; O'Reilly, R. K.; Chen, G. S. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 2016, 5, 1059–1064.
Champion, J. A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244–249.
Wang, Y. G.; Xia, G. M.; Tan, M. M.; Wang, M. D.; Li, Y. Z.; Wang, H. M. H-dimeric nanospheres of amphipathic squaraine dye with an 81.2% photothermal conversion efficiency for photothermal therapy. Adv. Funct. Mater. 2022, 32, 2113098.
Savyasachi, A. J.; Kotova, O.; Shanmugaraju, S.; Bradberry, S. J.; Ó’Máille, G. M.; Gunnlaugsson, T. Supramolecular chemistry: A toolkit for soft functional materials and organic particles. Chem 2017, 3, 764–811.
Song, Q.; Jiao, Y.; Wang, Z. Q.; Zhang, X. Tuning the energy gap by supramolecular approaches: Towards near-infrared organic assemblies and materials. Small 2016, 12, 24–31.
Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.
Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.
Tang, L. G.; Zhang, F. W.; Yu, F.; Sun, W. J.; Song, M. L.; Chen, X. Y.; Zhang, X. Z.; Sun, X. L. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials 2017, 129, 28–36.
Xu, M. Z.; Qi, Y. M.; Liu, G. S.; Song, Y. Q.; Jiang, X. Y.; Du, B. J. Size-dependent in vivo transport of nanoparticles: Implications for delivery, targeting, and clearance. ACS Nano 2023, 17, 20825–20849.
Jia, H. R.; Zhu, Y. X.; Liu, X. Y.; Pan, G. Y.; Gao, G.; Sun, W.; Zhang, X. D.; Jiang, Y. W.; Wu, F. G. Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs. ACS Nano 2019, 13, 11781–11792.
Xue, J. X.; Guan, Z.; Lin, J. P.; Cai, C. H.; Zhang, W. J.; Jiang, X. Q. Cellular internalization of rod-like nanoparticles with various surface patterns: Novel entry pathway and controllable uptake capacity. Small 2017, 13, 1604214.
Xu, L.; Wang, C.; Li, Y. X.; Xu, X. H.; Zhou, L.; Liu, N.; Wu, Z. Q. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence. Angew. Chem., Int. Ed. 2020, 59, 16675–16682.
Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.
Yin, P. C.; Zhang, Z. M.; Lv, H. J.; Li, T.; Haso, F.; Hu, L.; Zhang, B. F.; Bacsa, J.; Wei, Y. G.; Gao, Y. Q. et al. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nat. Commun. 2015, 6, 6475.
Liu, G. F.; Zhang, D.; Feng, C. L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem., Int. Ed. 2014, 53, 7789–7793.
Liu, G. F.; Zhao, Y. L. Switching between phosphorescence and fluorescence controlled by chiral self-assembly. Adv. Sci. 2017, 4, 1700021.
Lynch, D. E.; Hamilton, D. G. Croconaine dyes-the lesser known siblings of squaraines. Eur. J. Org. Chem. 2017, 2017, 3897–3911.
Song, X. Z.; Foley, J. W. A new water-soluble near-infrared croconium dye. Dyes Pigm. 2008, 78, 60–64.
Harmatys, K. M.; Battles, P. M.; Peck, E. M.; Spence, G. T.; Roland, F. M.; Smith, B. D. Selective photothermal inactivation of cells labeled with near-infrared croconaine dye. Chem. Commun. 2017, 53, 9906–9909.
Chen, Q.; Liu, X. D.; Zeng, J. F.; Cheng, Z. P.; Liu, Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 2016, 98, 23–30.
Yu, F.; Zhang, F. W.; Tang, L. G.; Ma, J. W.; Ling, D. S.; Chen, X. Y.; Sun, X. L. Redox-responsive dual chemophotothermal therapeutic nanomedicine for imaging-guided combinational therapy. J. Mater. Chem. B 2018, 6, 5362–5367.
Guo, L. X.; Liu, M. H.; Sayed, S. M.; Lin, B. P.; Keller, P.; Zhang, X. Q.; Sun, Y.; Yang, H. A calamitic mesogenic near-infrared absorbing croconaine dye/liquid crystalline elastomer composite. Chem. Sci. 2016, 7, 4400–4406.
Tang, L. G.; Sun, X. L.; Liu, N.; Zhou, Z. J.; Yu, F.; Zhang, X. Z.; Sun, X. L.; Chen, X. Y. Radiolabeled angiogenesis-targeting croconaine nanoparticles for trimodality imaging guided photothermal therapy of glioma. ACS Appl. Nano Mater. 2018, 1, 1741–1749.
Jansen, F.; Lamla, M.; Mauthe, D.; Fischer, S.; Barth, H.; Kuehne, A. J. C. Croconaine-based polymer particles as contrast agents for photoacoustic imaging. Macromol Rapid Commun. 2020, 41, 2000418.
Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wang, R. H.; Wu, F. G.; Chen, Z. Dual channel activatable cyanine dye for mitochondrial imaging and mitochondria-targeted cancer theranostics. ACS Biomater. Sci. Eng. 2017, 3, 3596–3606.
Herz, A. H. Aggregation of sensitizing dyes in solution and their adsorption onto silver halides. Adv. Colloid Interface Sci. 1977, 8, 237–298.
Jiang, H. J.; Fan, H. H.; Jiang, Y. Q.; Zhang, L.; Liu, M. H. Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: Substituent and solvent effects. Beilstein J. Nanotechnol. 2019, 10, 1608–1617.
Helmers, I.; Ghosh, G.; Albuquerque, R. Q.; Fernández, G. Pathway and length control of supramolecular polymers in aqueous media via a hydrogen bonding lock. Angew. Chem., Int. Ed. 2021, 60, 4368–4376.
Zhao, T. H.; Han, J. L.; Jin, X.; Liu, Y.; Liu, M. H.; Duan, P. F. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem., Int. Ed. 2019, 58, 4978–4982.
Li, H.; Han, L.; Li, Q.; Wang, H. T.; Fernández-Trillo, P.; Tian, L. L.; He, F. Morphologically tunable supramolecular rectangular microsheet and microsaw constructed by hierarchical self-assembly based on hydrogen bonds. Macromol. Rapid Commun. 2022, 43, 2200368.
Greciano, E. E.; Calbo, J.; Ortí, E.; Sánchez, L. N-annulated perylene bisimides to bias the differentiation of metastable supramolecular assemblies into J- and H-aggregates. Angew. Chem., Int. Ed. 2020, 59, 17517–17524.
Sang, Y. T.; Duan, P. F.; Liu, M. H. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral C3-symmetric ester. Chem. Commun. 2018, 54, 4025–4028.
Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.
Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Supramolecular photothermal effects: A promising mechanism for efficient thermal conversion. Angew. Chem., Int. Ed. 2020, 59, 3793–3801.
Zhu, J.; Wang, K.; Jiang, Z.; Zhua, B.; Wu, H. Modeling of heat transfer for energy efficiency prediction of solar receivers. Energy 2020, 190, 116372.
Möller, J.; Luehmann, T.; Hall, H.; Vogel, V. The race to the pole: How high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous escherichia coli bacteria by macrophages. Nano Lett. 2012, 12, 2901–2905.
Müllner, M.; Dodds, S. J.; Nguyen, T. H.; Senyschyn, D.; Porter, C. J. H.; Boyd, B. J.; Caruso, F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano 2015, 9, 1294–1304.
Chen, Z. J.; Liu, Y.; Wagner, W.; Stepanenko, V.; Ren, X. K.; Ogi, S.; Würthner, F. Near-IR absorbing j-aggregate of an amphiphilic BF2-azadipyrromethene dye by kinetic cooperative self-assembly. Angew. Chem., Int. Ed. 2017, 56, 5729–5733.
Symons, H. E.; Hagemann, M. J. L.; Harniman, R. L.; Faul, C. F. J. Thionated PDI supramolecular polymers: Controlling aggregation mechanisms, morphology and function. J. Mater. Chem. C 2022, 10, 2828–2837.
Smulders, M. M. J.; Nieuwenhuizen, M. M. L.; de Greef, T. F. A.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem.—Eur. J. 2010, 16, 362–367.
Qian, J. S.; Lu, Y. J.; Chia, A.; Zhang, M.; Rupar, P. A.; Gunari, N.; Walker, G. C.; Cambridge, G.; He, F.; Guerin, G. et al. Self-seeding in one dimension: A route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 2013, 7, 3754–3766.
Qian, J. S.; Guerin, G.; Lu, Y. J.; Cambridge, G.; Manners, I.; Winnik, M. A. Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprene-polyferrocenylsilane block copolymer micelles. Angew. Chem., Int. Ed. 2011, 50, 1622–1625.
Jia, L.; Guerin, G.; Lu, Y. J.; Yu, Q.; Manners, I.; Winnik, M. A. Creating biomorphic barbed and branched mesostructures in solution through block copolymer crystallization. Angew. Chem., Int. Ed. 2018, 57, 17205–17210.
Kanzaki, C.; Nakadozono, T.; Numata, M. Creation of discrete 1D microstructures: Directional dissociation from the ends of a metastable supramolecular polymer. ChemPlusChem 2020, 85, 74–78.
Lei, S.; Zhang, Y. F.; Blum, N. T.; Huang, P.; Lin, J. Recent advances in croconaine dyes for bioimaging and theranostics. Bioconjugate Chem. 2020, 31, 2072–2084.
Leenders, C. M. A.; Baker, M. B.; Pijpers, I. A. B.; Lafleur, R. P. M.; Albertazzi, L.; Palmans, A. R. A.; Meijer, E. W. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter 2016, 12, 2887–2893.
Molla, M. R.; Ghosh, S. Aqueous self-assembly of chromophore-conjugated amphiphiles. Phys. Chem. Chem. Phys. 2014, 16, 26672–26683.