AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anomalous magnetic property and broadband photodetection in ultrathin non-layered manganese selenide semiconductor

Ye Zhao1Ruilong Yang1,2( )Ke Yang1Jiarui Dou1Xiaoting Yang1Jinzhong Guo1Guowei Zhou1,2Xiaohong Xu1,2( )
School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China
Research Institute of Materials Science, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Shanxi Normal University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

This study presents the detailed growth process of ultrathin two-dimensional (2D) magnetic semiconductor α-MnSe, and its outstanding magnetic properties and broadband photodetection, which provide an excellent platform for magneto–optical and magneto–optoelectronic research.

Abstract

Two-dimensional (2D) semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in next-generation spintronic and optoelectronic devices. However, controllable synthesis of intrinsic 2D magnetic semiconductor on a substrate is still a challenging task. Herein, large-area 2D non-layered rock salt (α-phase) MnSe nanosheets were grown on mica substrates, with the thickness changing from 54.2 to 0.9 nm (one unit cell), by chemical vapour deposition. The X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements confirmed that the resulting 2D α-MnSe nanosheets were obtained as high-quality single crystals. The magnetic hysteresis loops and synchrotron X-ray measurements directly indicated the anomalous magnetic properties in α-MnSe nanosheets. Comprehensive analysis of the reasons for magnetic property revealed that the low-temperature phase transition, small number of stacking differences in crystals, and surface weak oxidation in (111)-oriented α-MnSe were the main mechanisms. Furthermore, α-MnSe nanosheets exhibited broadband photoresponse from 457 to 671 nm with an outstanding detectivity and responsivity behaviours. This study presents the detailed growth process of ultrathin 2D magnetic semiconductor α-MnSe, and its outstanding magnetic properties and broadband photodetection, which provide an excellent platform for magneto–optical and magneto–optoelectronic research.

Electronic Supplementary Material

Download File(s)
6855_ESM.pdf (572.8 KB)

References

[1]
Wang, H.; Wen, Y.; Zeng, H.; Xiong, Z. R.; Tu, Y. Y.; Zhu, H.; Cheng, R. Q.; Yin, L.; Jiang, J.; Zhai, B. X. et al. 2D ferroic materials for nonvolatile memory applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202305044.
[2]

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

[3]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[4]

Liu, S. H.; Hu, S. J.; Cui, X. M.; Kimura, T. Efficient thermo-spin conversion in van der Waals ferromagnet FeGaTe. Adv. Mater. 2024, 36, 2309776.

[5]

Dai, C. Y.; He, P.; Luo, L. X.; Zhan, P. X.; Guan, B.; Zheng, J. Research progress of two-dimensional magnetic materials. Sci. China Mater. 2023, 66, 859–876.

[6]

Hu, X. Y.; Jin, Z. T.; Zhong, Y. L.; Dai, J. X.; Tao, X. W.; Zhang, X. X.; Han, J. B.; Jiang, S. W.; Zhou, L. Epitaxial growth of two-dimensional magnetic lateral and vertical heterostructures. Chem. Mater. 2023, 35, 4220–4227.

[7]

Yao, Y. Y.; Zhan, X. Y.; Sendeku, M. G.; Yu, P.; Dajan, F. T.; Zhu, C. C.; Li, N. N.; Wang, J. J.; Wang, F.; Wang, Z. X. et al. Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology 2021, 32, 472001.

[8]

Huang, Y. L.; Chen, W.; Wee, A. T. S. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2021, 2, 139–153.

[9]

Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem., Int. Ed. 2010, 49, 4638–4640.

[10]

Ito, T.; Ito, K.; Oka, M. Magnetic susceptibility, thermal expansion and electrical resistivity of MnSe. Jpn. J. Appl. Phys. 1978, 17, 371–374.

[11]

Xue, M. Z.; Fu, Z. W. Manganese selenide thin films as anode material for lithium-ion batteries. Solid State Ionics 2007, 178, 273–279.

[12]

Sun, J. J.; Li, C.; Chen, D.; Kang, S. S.; Liu, G. L.; Yu, S. Y.; Han, G. B.; Mei, L. M. Controlled synthesis of ferromagnetic MnSe x particles. Chin. Phys. B 2016, 25, 107405.

[13]

O’Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

[14]

Zhang, Z. C.; Zhao, B.; Shen, D. Y.; Tao, Q. Y.; Li, B.; Wu, R. X.; Li, B. L.; Yang, X. D.; Li, J.; Song, R. et al. Synthesis of ultrathin 2D nonlayered α-MnSe nanosheets, MnSe/WS2 heterojunction for high-performance photodetectors. Small Struct. 2021, 2, 2100028.

[15]

Li, N. N.; Zhu, L. L.; Shang, H. H.; Wang, F.; Zhang, Y.; Yao, Y. Y.; Wang, J. J.; Zhan, X. Y.; Wang, F. M.; He, J. et al. Controlled synthesis and Raman study of a 2D antiferromagnetic P-type semiconductor: α-MnSe. Nanoscale 2021, 13, 6953–6964.

[16]

Zhou, N.; Zhang, Z. M.; Wang, F. K.; Li, J. H.; Xu, X.; Li, H. R.; Ding, S.; Liu, J. M.; Li, X. B.; Xie, Y. et al. Spin ordering induced broadband photodetection based on two-dimensional magnetic semiconductor α-MnSe. Adv. Sci. 2022, 9, 2202177.

[17]

Huang, C. H.; Wang, C. W.; Chang, C. C.; Lee, Y. C.; Huang, G. T.; Wang, M. J.; Wu, M. K. Anomalous magnetic properties in Mn(Se, S) system. J. Magn. Magn. Mater. 2019, 483, 205–211.

[18]

Hu, L.; Cao, L.; Li, L. W.; Duan, J. M.; Liao, X. Q.; Long, F. C.; Zhou, J.; Xiao, Y. G.; Zeng, Y. J.; Zhou, S. Q. Two-dimensional magneto-photoconductivity in non-van der Waals manganese selenide. Mater. Horiz. 2021, 8, 1286–1296.

[19]

Zhu, M. J.; Xu, H.; Tan, Z. Q.; Wang, L. Synthesis of uniform two-dimensional non-layered α-MnSe by molecular sieves modified chemical vapor deposition. Results Phys. 2023, 47, 106321.

[20]

Grzybowski, M. J.; Autieri, C.; Domagala, J.; Krasucki, C.; Kaleta, A.; Kret, S.; Gas, K.; Sawicki, M.; Bożek, R.; Suffczyński, J. et al. Wurtzite vs. rock-salt MnSe epitaxy: Electronic and altermagnetic properties. Nanoscale 2024, 16, 6259–6267.

[21]

Ye, K.; Yan, J. X.; Liu, L. X.; Li, P. H.; Yu, Z. P.; Gao, Y.; Yang, M. M.; Huang, H.; Nie, A. M.; Shu, Y. et al. Broadband polarization-sensitive photodetection of magnetic semiconducting MnTe nanoribbons. Small 2023, 19, 2300246.

[22]

Zhou, G. W.; Song, C.; Bai, Y. H.; Quan, Z. Y.; Jiang, F. X.; Liu, W. Q.; Xu, Y. B.; Dhesi, S. S.; Xu, X. H. Robust Interfacial exchange bias and metal-insulator transition influenced by the LaNiO3 layer thickness in La0.7Sr0.3MnO3/LaNiO3 superlattices. ACS Appl. Mater. Interfaces 2017, 9, 3156–3160.

[23]

Zou, J. Y.; Yang, Y. M.; Hu, D. Y.; Kang, L. X.; Zhu, C.; Tian, D.; Lv, X. D.; Kutty, G.; Guo, Y. X.; Xu, M. Z. et al. Controlled growth of ultrathin ferromagnetic β-MnSe semiconductor. SmartMat 2022, 3, 482–490.

[24]

Hung, T. L.; Huang, C. H.; Deng, L. Z.; Ou, M. N.; Chen, Y. Y.; Wu, M. K.; Huyan, S. Y.; Chu, C. W.; Chen, P. J.; Lee, T. K. Pressure induced superconductivity in MnSe. Nat. Commun. 2021, 12, 5436.

[25]

Xiao, H.; Zhuang, W. Z.; Loh, L.; Liang, T.; Gayen, A.; Ye, P.; Bosman, M.; Eda, G.; Wang, X. F.; Xu, M. S. Van der Waals epitaxial growth of 2D layered room-temperature ferromagnetic CrS2. Adv. Mater. Interfaces 2022, 9, 2201353.

[26]

Li, D. R.; Zhang, X.; He, W. J.; Lei, L.; Peng, Y.; Xiang, G. Structure-dependent high- TC ferromagnetism in Mn-doped GeSe. Nanoscale 2022, 14, 13343–13351.

[27]

Sarma, R.; Sarma, M.; Kashyap, M. J. Synthesis and optical properties of MnSe nanostructures: A review. Nanosystems: Phys. Chem. Math 2022, 13, 546–564.

[28]

Man, X. X.; Gong, B. C.; Sun, P. H.; Liu, K.; Lu, Z. Y. First-principles study on the magnetic and electronic properties of the high-pressure orthorhombic phase of MnSe. Phys. Rev. B 2022, 106, 035136.

[29]

Hossain, M.; Qin, B.; Li, B.; Duan, X. D. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today 2022, 42, 101338.

[30]

Miao, W. T.; Zhen, W. L.; Tan, C.; Wang, J.; Nie, Y.; Wang, H. N.; Wang, L.; Niu, Q.; Tian, M. L. Nonreciprocal antisymmetric magnetoresistance and unconventional Hall effect in a two-dimensional ferromagnet. ACS Nano 2023, 17, 25449–25458.

[31]

Sun, B.; Yan, Z.; Cao, Y.; Ding, S. S.; Li, R. J.; Ma, B.; Li, X. Y.; Yang, H.; Yin, W.; Zhang, Y. M. et al. Intrinsic ferromagnetic semiconductors with high saturation magnetization from hybrid perovskites. Adv. Mater. 2023, 35, 2303945.

[32]

Liu, K. H.; Ma, X. K.; Xu, S. K.; Li, Y. Y.; Zhao, M. W. Tunable sliding ferroelectricity and magnetoelectric coupling in two-dimensional multiferroic MnSe materials. npj Comput. Mater. 2023, 9, 16.

[33]

Liu, C.; Zhang, S. F.; Hao, H. Y.; Algaidi, H.; Ma, Y. C.; Zhang, X. X. Magnetic skyrmions above room temperature in a van der Waals ferromagnet Fe3GaTe2. Adv. Mater. 2024, 36, 2311022.

[34]

Qin, B.; Saeed, M. Z.; Li, Q. Q.; Zhu, M. L.; Feng, Y.; Zhou, Z. Q.; Fang, J. Z.; Hossain, M.; Zhang, Z. C.; Zhou, Y. C. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 2023, 14, 304.

[35]

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

[36]

Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511–5517.

[37]

Li, B. L.; Deng, X.; Shu, W. N.; Cheng, X.; Qian, Q.; Wan, Z.; Zhao, B.; Shen, X. H.; Wu, R. X.; Shi, S. et al. Air-stable ultrathin Cr3Te4 nanosheets with thickness-dependent magnetic biskyrmions. Mater. Today 2022, 57, 66–74.

Nano Research
Pages 8578-8584
Cite this article:
Zhao Y, Yang R, Yang K, et al. Anomalous magnetic property and broadband photodetection in ultrathin non-layered manganese selenide semiconductor. Nano Research, 2024, 17(9): 8578-8584. https://doi.org/10.1007/s12274-024-6855-3
Topics:

164

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 May 2024
Revised: 30 June 2024
Accepted: 01 July 2024
Published: 30 July 2024
© Tsinghua University Press 2024
Return