AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-areal-capacity/power lithium metal microbattery configuration based on the mechanically flexible, ultra-lightweight, nanocellulose framework

Shaowen Li1,3Ting Zhao1Helin Wang1Zhiqiao Wang1Min Zhang1Ahu Shao1Jiacheng Liu1Zhaohui Wang2( )Yue Ma1( )
State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
Show Author Information

Graphical Abstract

The film-stacked, all-cellulose-based configuration achieves the facile reaction kinetics and multi-scale interfacial stability, as well as the enhanced weight ratio of the electroactive components.

Abstract

The ubiquitous implementation of integrated microelectronics requires the on-chip power sources featured with the lightweight configuration design, high areal-capacity-loadings as well as facile reaction kinetics that beyond the current available microbattery prototypes. Herein, this study constructs a mechanically flexible, nanocellulose fiber (NCF) reinforced microbattery configuration, which consists of metal–organic frameworks (ZIF-8) modified NCF as the separator (MOF@NCF), the carbonized MOF@NCF as the metallic deposition substrate (c-MOF@NCF) as well as gradient-structured LiFePO4 particles infiltrated in the NCF matrix (LFP@NCF) as the cathode. The film-stacked, integrated NCF-based microbattery prototype not only achieves the facile reaction kinetics with homogenized, dendrite-free Li metal deposition at high-capacity-loadings (2 mAh·cm−2), but also eliminates the necessary use of metallic current collector to maximize the electroactive mass ratio, which therefore enables the high energy density of 6.8 mWh·cm−2 at the power output of 1.36 mW·cm−2 as well as the robust cyclability upon various geometric flexing states. This study presents a quantum leap towards the facile reaction kinetics and multi-scale interfacial stability for the flexible microbattery construction that based on the sustainable utilization of bio-scaffolds.

Electronic Supplementary Material

Download File(s)
6856_ESM.pdf (1.6 MB)

References

[1]

Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257–4263.

[2]

Zhu, S.; Sheng, J.; Ni, J. F.; Li, Y. 3D vertical arrays of nanomaterials for microscaled energy storage devices. Acc. Mater. Res. 2021, 2, 1215–1226.

[3]
Zhu, J. B.; Hu, W. X.; Ni, J. F.; Li, L. Zinc micro-energy storage devices powering microsystems. Natl. Sci. Open, in press, DOI: 10.1360/nso/20230078.
[4]

Li, Y. Q.; Shi, H.; Wang, S. B.; Zhou, Y. T.; Wen, Z.; Lang, X. Y.; Jiang, Q. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 2019, 10, 4292.

[5]

Lai, W. H.; Wang, Y.; Lei, Z. W.; Wang, R. H.; Lin, Z. Y.; Wong, C. P.; Kang, F. Y.; Yang, C. High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J. Mater. Chem. A 2018, 6, 3933–3940.

[6]

Zheng, S. H.; Wu, Z. S.; Zhou, F.; Wang, X.; Ma, J. M.; Liu, C.; He, Y. B.; Bao, X. H. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613–620.

[7]

Sun, G. Q.; Jin, X. T.; Yang, H. S.; Gao, J.; Qu, L. T. An aqueous Zn-MnO2 rechargeable microbattery. J. Mater. Chem. A 2018, 6, 10926–10931.

[8]

Liu, Q. W.; Zhang, G. F.; Chen, N.; Feng, X. X.; Wang, C. Z.; Wang, J. Q.; Jin, X. T.; Qu, L. T. The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: Small and powerful. Adv. Funct. Mater. 2020, 38, 2002086.

[9]

Pikul, J. H.; Zhang, H. G.; Cho, J.; Braun, P. V.; King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 2013, 4, 1732.

[10]

Ning, H. L.; Pikul, J. H.; Zhang, R.; Li, X. J.; Xu, S.; Wang, J. J.; Rogers, J. A.; King, W. P.; Braun, P. V. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573–6578.

[11]

Xiong, B. J.; Chen, R.; Zeng, F. X. Y.; Kang, J.; Men, Y. F. Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J. Membr. Sci. 2018, 545, 213–220.

[12]

Shi, J. L.; Xia, Y. G.; Yuan, Z. Z.; Hu, H. S.; Li, X. F.; Zhang, H. M.; Liu, Z. P. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: A new and practical separator candidate for high safety lithium ion battery. Sci. Rep. 2015, 5, 8255.

[13]

Wang, Z. H.; Lee, Y. H.; Kim, S. W.; Seo, J. Y.; Lee, S. Y.; Nyholm, L. Why cellulose-based electrochemical energy storage devices? Adv. Mater. 2020, 33, 2000892.

[14]

Kim, J. H.; Lee, D.; Lee, Y. H.; Chen, W. S.; Lee, S. Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater. 2019, 31, 1804826.

[15]

Chen, C. J.; Hu, L. B. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Acc. Chem. Res. 2028, 51, 3154–3165.

[16]

Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

[17]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

[18]

Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B. et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.

[19]

Li, J. X.; Dai, L. Q.; Wang, Z. F.; Wang, H.; Xie, L. J.; Chen, J. P.; Yan, C.; Yuan, H.; Wang, H. L.; Chen, C. M. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. J. Energy Chem. 2022, 67, 736–744.

[20]

Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.

[21]

Kim, P. J.; Kim, K.; Pol, V. G. A comparative study of cellulose derived structured carbons on the electrochemical behavior of lithium metal-based batteries. Energy Storage Mater. 2019, 19, 179–185.

[22]

Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

[23]

Zhao, Y.; Song, Z. X.; Li, X.; Sun, Q.; Cheng, N. C.; Lawes, S.; Sun, X. L. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2016, 2, 35–62.

[24]

Tang, M.; Jiang, C.; Liu, S. Y.; Li, X.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L. Small amount COFs enhancing storage of large anions. Energy Storage Mater. 2020, 27, 35–42.

[25]

Kim, J.; Lee, J.; Yun, J.; Choi, S. H.; Han, S. A.; Moon, J.; Kim, J. H.; Lee, J. W.; Park, M. S. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1910538.

[26]

Kim, J. H.; Lee, Y. H.; Cho, S. J.; Gwon, J. G.; Cho, H. J.; Jang, M.; Lee, S. Y.; Lee, S. Y. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: Towards ultrahigh energy density and flexibility. Energy Environ. Sci. 2019, 12, 177–186.

[27]

Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.

[28]

Kim, J. H.; Gu, M. S.; Lee, D. H.; Kim, J. H.; Oh, Y. S.; Min, S. H.; Kim, B. S.; Lee, S. Y. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett. 2016, 16, 5533–5541.

[29]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[30]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[31]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[32]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[33]

Ma, Y.; Li, S. W.; Wei, B. Q. Probing the dynamic evolution of lithium dendrites: A review of in situ/operando characterization for lithium metallic batteries. Nanoscale 2019, 11, 20429–20436.

[34]

Li, S. W.; Ma, Y.; Wei, B. Q. A lightweight, adhesive, dual-functionalized over-coating interphase toward ultra-stable high-current density lithium metal anodes. Energy Environ. Mater. 2021, 4, 103–110.

[35]

Li, S. W.; Jiang, P. E.; Wang, K.; Sun, C. C.; Tang, X. Y.; Wu, W. W.; Zhao, W. Y.; Zhao, T.; Ma, Y.; Wei, B. Q. Spatially anchoring the lithiophilic composites within the mixed-conducting phase: A hybrid storage mechanism enabled by the Al-Si@AlSiO x composite. Chem. Eng. J. 2021, 417, 127915.

[36]

Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.

[37]

Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 2019, 9, 1902254.

[38]

Ni, J. F.; Dai, A.; Yuan, Y. F.; Li, L.; Lu, J. Three-dimensional microbatteries beyond lithium ion. Matter 2020, 2, 1366–1376.

[39]

Huang, N.; Tang, C.; Jiang, H.; Sun, J.; Du, A. J.; Zhang, H. J. Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano Res. 2024, 17, 2619–2627.

[40]

Li, H. T.; Lv, F. T.; Fang, X.; Zhu, G. J.; Yu, W.; Zhang, H. J. Molecular engineering assembly of mesoporous carbon onto Ti3C2T x MXene for enhanced lithium-ion storage. Carbon Neutralization 2023, 2, 678–688.

[41]

Sun, D. G.; Tang, C.; Cheng, H.; Xu, W. L.; Du, A. J.; Zhang, H. J. Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. J. Energy Chem. 2022, 72, 479–486.

[42]

Han, Z. Y.; Zhang, C.; Lin, Q. W.; Zhang, Y. B.; Deng, Y. Q.; Han, J. W.; Wu, D. C.; Kang, F. Y.; Yang, Q. H.; Lv, W. A protective layer for lithium metal anode: Why and how. Small Methods 2021, 5, 2001035.

[43]

Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 2017, 353, 333–342.

[44]

Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. Y.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.

[45]

Zhang, Y.; Zheng, S. H.; Zhou, F.; Shi, X. Y.; Dong, C.; Das, P.; Ma, J. X.; Wang, K.; Wu, Z. S. Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 2022, 18, 2104506.

[46]

Chen, Q. M.; Xu, R.; He, Z. T.; Zhao, K. J.; Pan, L. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J. Electrochem. Soc. 2017, 164, A1852–A1857.

[47]

Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L.; Zhu, H. L. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.

[48]

Ihrig, M.; Dashjav, E.; Odenwald, P.; Dellen, C.; Grüner, D.; Gross, J. P.; Nguyen, T. T. H.; Lin, Y. H.; Scheld, W. S.; Lee, C. et al. Enabling high-performance hybrid solid-state batteries by improving the microstructure of free-standing LATP/LFP composite cathodes. ACS Appl. Mater. Interfaces 2024, 16, 17461–17473.

[49]

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

[50]

Zhu, J. B.; Hu, W. X.; Ni, J. F.; Li, L. High areal energy zinc-ion micro-batteries enabled by 3D printing. J. Mater. Sci. Technol. 2024, 196, 183–189.

Nano Research
Pages 8155-8162
Cite this article:
Li S, Zhao T, Wang H, et al. High-areal-capacity/power lithium metal microbattery configuration based on the mechanically flexible, ultra-lightweight, nanocellulose framework. Nano Research, 2024, 17(9): 8155-8162. https://doi.org/10.1007/s12274-024-6856-2
Topics:

269

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 June 2024
Revised: 30 June 2024
Accepted: 30 June 2024
Published: 16 July 2024
© Tsinghua University Press 2024
Return