Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The ubiquitous implementation of integrated microelectronics requires the on-chip power sources featured with the lightweight configuration design, high areal-capacity-loadings as well as facile reaction kinetics that beyond the current available microbattery prototypes. Herein, this study constructs a mechanically flexible, nanocellulose fiber (NCF) reinforced microbattery configuration, which consists of metal–organic frameworks (ZIF-8) modified NCF as the separator (MOF@NCF), the carbonized MOF@NCF as the metallic deposition substrate (c-MOF@NCF) as well as gradient-structured LiFePO4 particles infiltrated in the NCF matrix (LFP@NCF) as the cathode. The film-stacked, integrated NCF-based microbattery prototype not only achieves the facile reaction kinetics with homogenized, dendrite-free Li metal deposition at high-capacity-loadings (2 mAh·cm−2), but also eliminates the necessary use of metallic current collector to maximize the electroactive mass ratio, which therefore enables the high energy density of 6.8 mWh·cm−2 at the power output of 1.36 mW·cm−2 as well as the robust cyclability upon various geometric flexing states. This study presents a quantum leap towards the facile reaction kinetics and multi-scale interfacial stability for the flexible microbattery construction that based on the sustainable utilization of bio-scaffolds.
Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257–4263.
Zhu, S.; Sheng, J.; Ni, J. F.; Li, Y. 3D vertical arrays of nanomaterials for microscaled energy storage devices. Acc. Mater. Res. 2021, 2, 1215–1226.
Li, Y. Q.; Shi, H.; Wang, S. B.; Zhou, Y. T.; Wen, Z.; Lang, X. Y.; Jiang, Q. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 2019, 10, 4292.
Lai, W. H.; Wang, Y.; Lei, Z. W.; Wang, R. H.; Lin, Z. Y.; Wong, C. P.; Kang, F. Y.; Yang, C. High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J. Mater. Chem. A 2018, 6, 3933–3940.
Zheng, S. H.; Wu, Z. S.; Zhou, F.; Wang, X.; Ma, J. M.; Liu, C.; He, Y. B.; Bao, X. H. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613–620.
Sun, G. Q.; Jin, X. T.; Yang, H. S.; Gao, J.; Qu, L. T. An aqueous Zn-MnO2 rechargeable microbattery. J. Mater. Chem. A 2018, 6, 10926–10931.
Liu, Q. W.; Zhang, G. F.; Chen, N.; Feng, X. X.; Wang, C. Z.; Wang, J. Q.; Jin, X. T.; Qu, L. T. The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: Small and powerful. Adv. Funct. Mater. 2020, 38, 2002086.
Pikul, J. H.; Zhang, H. G.; Cho, J.; Braun, P. V.; King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 2013, 4, 1732.
Ning, H. L.; Pikul, J. H.; Zhang, R.; Li, X. J.; Xu, S.; Wang, J. J.; Rogers, J. A.; King, W. P.; Braun, P. V. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573–6578.
Xiong, B. J.; Chen, R.; Zeng, F. X. Y.; Kang, J.; Men, Y. F. Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J. Membr. Sci. 2018, 545, 213–220.
Shi, J. L.; Xia, Y. G.; Yuan, Z. Z.; Hu, H. S.; Li, X. F.; Zhang, H. M.; Liu, Z. P. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: A new and practical separator candidate for high safety lithium ion battery. Sci. Rep. 2015, 5, 8255.
Wang, Z. H.; Lee, Y. H.; Kim, S. W.; Seo, J. Y.; Lee, S. Y.; Nyholm, L. Why cellulose-based electrochemical energy storage devices? Adv. Mater. 2020, 33, 2000892.
Kim, J. H.; Lee, D.; Lee, Y. H.; Chen, W. S.; Lee, S. Y. Nanocellulose for energy storage systems: Beyond the limits of synthetic materials. Adv. Mater. 2019, 31, 1804826.
Chen, C. J.; Hu, L. B. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Acc. Chem. Res. 2028, 51, 3154–3165.
Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.
Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.
Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B. et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.
Li, J. X.; Dai, L. Q.; Wang, Z. F.; Wang, H.; Xie, L. J.; Chen, J. P.; Yan, C.; Yuan, H.; Wang, H. L.; Chen, C. M. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. J. Energy Chem. 2022, 67, 736–744.
Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.
Kim, P. J.; Kim, K.; Pol, V. G. A comparative study of cellulose derived structured carbons on the electrochemical behavior of lithium metal-based batteries. Energy Storage Mater. 2019, 19, 179–185.
Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.
Zhao, Y.; Song, Z. X.; Li, X.; Sun, Q.; Cheng, N. C.; Lawes, S.; Sun, X. L. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2016, 2, 35–62.
Tang, M.; Jiang, C.; Liu, S. Y.; Li, X.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L. Small amount COFs enhancing storage of large anions. Energy Storage Mater. 2020, 27, 35–42.
Kim, J.; Lee, J.; Yun, J.; Choi, S. H.; Han, S. A.; Moon, J.; Kim, J. H.; Lee, J. W.; Park, M. S. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1910538.
Kim, J. H.; Lee, Y. H.; Cho, S. J.; Gwon, J. G.; Cho, H. J.; Jang, M.; Lee, S. Y.; Lee, S. Y. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: Towards ultrahigh energy density and flexibility. Energy Environ. Sci. 2019, 12, 177–186.
Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.
Kim, J. H.; Gu, M. S.; Lee, D. H.; Kim, J. H.; Oh, Y. S.; Min, S. H.; Kim, B. S.; Lee, S. Y. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett. 2016, 16, 5533–5541.
Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.
Ma, Y.; Li, S. W.; Wei, B. Q. Probing the dynamic evolution of lithium dendrites: A review of in situ/operando characterization for lithium metallic batteries. Nanoscale 2019, 11, 20429–20436.
Li, S. W.; Ma, Y.; Wei, B. Q. A lightweight, adhesive, dual-functionalized over-coating interphase toward ultra-stable high-current density lithium metal anodes. Energy Environ. Mater. 2021, 4, 103–110.
Li, S. W.; Jiang, P. E.; Wang, K.; Sun, C. C.; Tang, X. Y.; Wu, W. W.; Zhao, W. Y.; Zhao, T.; Ma, Y.; Wei, B. Q. Spatially anchoring the lithiophilic composites within the mixed-conducting phase: A hybrid storage mechanism enabled by the Al-Si@AlSiO x composite. Chem. Eng. J. 2021, 417, 127915.
Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.
Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 2019, 9, 1902254.
Ni, J. F.; Dai, A.; Yuan, Y. F.; Li, L.; Lu, J. Three-dimensional microbatteries beyond lithium ion. Matter 2020, 2, 1366–1376.
Huang, N.; Tang, C.; Jiang, H.; Sun, J.; Du, A. J.; Zhang, H. J. Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano Res. 2024, 17, 2619–2627.
Li, H. T.; Lv, F. T.; Fang, X.; Zhu, G. J.; Yu, W.; Zhang, H. J. Molecular engineering assembly of mesoporous carbon onto Ti3C2T x MXene for enhanced lithium-ion storage. Carbon Neutralization 2023, 2, 678–688.
Sun, D. G.; Tang, C.; Cheng, H.; Xu, W. L.; Du, A. J.; Zhang, H. J. Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. J. Energy Chem. 2022, 72, 479–486.
Han, Z. Y.; Zhang, C.; Lin, Q. W.; Zhang, Y. B.; Deng, Y. Q.; Han, J. W.; Wu, D. C.; Kang, F. Y.; Yang, Q. H.; Lv, W. A protective layer for lithium metal anode: Why and how. Small Methods 2021, 5, 2001035.
Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 2017, 353, 333–342.
Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. Y.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.
Zhang, Y.; Zheng, S. H.; Zhou, F.; Shi, X. Y.; Dong, C.; Das, P.; Ma, J. X.; Wang, K.; Wu, Z. S. Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 2022, 18, 2104506.
Chen, Q. M.; Xu, R.; He, Z. T.; Zhao, K. J.; Pan, L. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J. Electrochem. Soc. 2017, 164, A1852–A1857.
Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L.; Zhu, H. L. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.
Ihrig, M.; Dashjav, E.; Odenwald, P.; Dellen, C.; Grüner, D.; Gross, J. P.; Nguyen, T. T. H.; Lin, Y. H.; Scheld, W. S.; Lee, C. et al. Enabling high-performance hybrid solid-state batteries by improving the microstructure of free-standing LATP/LFP composite cathodes. ACS Appl. Mater. Interfaces 2024, 16, 17461–17473.
Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.
Zhu, J. B.; Hu, W. X.; Ni, J. F.; Li, L. High areal energy zinc-ion micro-batteries enabled by 3D printing. J. Mater. Sci. Technol. 2024, 196, 183–189.