AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures

Biqi Hu1,2Xing Xie1,2Xinyu Ouyang2Junying Chen1,2Shaofei Li1Jun He1Zongwen Liu3,4Jian-Tao Wang5,6,7Yanping Liu1,2,8( )
Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha 410083, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Shenzhen Research Institute of Central South University, Shenzhen 518000, China
Show Author Information

Graphical Abstract

The study demonstrates that fabricating a heterostructure with WSe2 and SiP flakes disrupts the C3 rotational symmetry of monolayer WSe2, inducing significant and tunable optical anisotropy in excitons, which holds potential for advancing anisotropic device applications.

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have garnered considerable attention for their promising applications in sensors and optoelectronic devices, owing to their exceptional optical, electronic, and optoelectronic properties. However, the inherent high symmetry of TMD lattices imposes limitations on their functional versatility. Here, we present a strategy to disrupt the C3 rotational symmetry of monolayer WSe2 by fabricating a heterostructure incorporating WSe2 and SiP flakes. Through comprehensive experimental investigations and first-principle calculations, we elucidate that in the WSe2/SiP heterostructure, excitons—both neutral and charged—emanating from WSe2 exhibit pronounced anisotropy, which remains robust against temperature variations. Notably, we observe an anisotropic ratio reaching up to 1.5, indicating a substantial degree of anisotropy. Furthermore, we demonstrate the tunability of exciton anisotropy through the application of a magnetic field, resulting in a significant reduction in the anisotropic ratio with increasing field strength, from 1.57 to 1.18. Remarkably, the change in heterojunction anisotropy ratio reaches 24.8% as the magnetic field increases. Our findings elucidate that the perturbation of the C3 rotational symmetry of the WSe2 monolayer arises from a non-uniform charge density distribution within the layer, exhibiting mirror symmetry. These results underscore the potential of heterostructure engineering in tailoring the properties of isotropic materials and provide a promising avenue for advancing the application of anisotropic devices across various fields.

Electronic Supplementary Material

Download File(s)
6857_ESM.pdf (2.3 MB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Kim, H. C.; Kim, H.; Lee, J. U.; Lee, H. B.; Choi, D. H.; Lee, J. H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H. et al. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 2015, 9, 6854–6860.

[3]

Mitioglu, A. A.; Plochocka, P.; Granados Del Aguila, Á.; Christianen, P. C. M.; Deligeorgis, G.; Anghel, S.; Kulyuk, L.; Maude, D. K. Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields. Nano Lett. 2015, 15, 4387–4392.

[4]

Sinha, S. S.; Yadgarov, L.; Aliev, S. B.; Feldman, Y.; Pinkas, I.; Chithaiah, P.; Ghosh, S.; Idelevich, A.; Zak, A.; Tenne, R. MoS2 and WS2 nanotubes: Synthesis, structural elucidation, and optical characterization. J. Phys. Chem. C 2021, 125, 6324–6340.

[5]

Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

[6]

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.

[7]

Ren, K.; Qin, H. S.; Liu, H. C.; Chen, Y.; Liu, X. J.; Zhang, G. Manipulating interfacial thermal conduction of 2D Janus heterostructure via a thermo-mechanical coupling. Adv. Funct. Mater. 2022, 32, 2110846.

[8]

Yu, Y. F.; Minhaj, T.; Huang, L. J.; Yu, Y. L.; Cao, L. Y. In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides. Phys. Rev. Appl. 2020, 13, 034059.

[9]

Zhou, W. X.; Chen, K. Q. First-principles determination of ultralow thermal conductivity of monolayer WSe2. Sci. Rep. 2015, 5, 15070.

[10]

Chowdhury, E. H.; Rahman, M. H.; Fatema, S.; Islam, M. M. Investigation of the mechanical properties and fracture mechanisms of graphene/WSe2 vertical heterostructure: A molecular dynamics study. Comput. Mater. Sci. 2021, 188, 110231.

[11]

Morell, N.; Reserbat-Plantey, A.; Tsioutsios, I.; Schädler, K. G.; Dubin, F.; Koppens, F. H. L.; Bachtold, A. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 2016, 16, 5102–5108.

[12]

Zhou, C. J.; Raju, S.; Li, B.; Chan, M.; Chai, Y.; Yang, C. Y. Self-driven metal-semiconductor-metal WSe2 photodetector with asymmetric contact geometries. Adv. Funct. Mater. 2018, 28, 1802954.

[13]

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

[14]

Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D. Y.; Onga, M.; Nakagawa, Y.; Watanabe, K. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 2021, 372, 68–72.

[15]

Zhang, K. N.; Bao, C. H.; Gu, Q. Q.; Ren, X.; Zhang, H. X.; Deng, K.; Wu, Y.; Li, Y.; Feng, J.; Zhou, S. Y. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2. Nat. Commun. 2016, 7, 13552.

[16]

Kanahashi, K.; Pu, J.; Takenobu, T. 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 2020, 10, 1902842.

[17]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Anisotropic optical characteristics of WS2/ReS2 heterostructures with broken rotational symmetry. Appl. Phys. Lett. 2023, 123, 222101.

[18]

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

[19]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[20]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Yu, G. Q.; Duan, J. A.; Liu, Y. P. Enhanced valley polarization in WSe2/YIG heterostructures via interfacial magnetic exchange effect. Nano Res. 2023, 16, 10580–10586.

[21]

Wang, J. Y.; Zhou, Y. J.; Xiang, D.; Ng, S. J.; Watanabe, K.; Taniguchi, T.; Eda, G. Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater. 2020, 32, 2001890.

[22]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[23]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

[24]

Li, L.; Gao, W.; Chen, H. Y.; Zhao, K.; Wen, P. T.; Yang, Y. J.; Wang, X. F.; Wei, Z. M.; Huo, N. J.; Li, J. B. Strong anisotropy and piezo-phototronic effect in SnO2 microwires. Adv. Electron. Mater. 2020, 6, 1901441.

[25]

Li, Z. Y.; Huang, J. W.; Zhou, L.; Xu, Z. A.; Qin, F.; Chen, P.; Sun, X. J.; Liu, G.; Sui, C.; Qiu, C. Y. et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Commun. 2023, 14, 5568.

[26]

Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

[27]

He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

[28]

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

[29]

Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 1987, 70, 207–209.

[30]

Zhao, S. Q.; Luo, P.; Yang, S. J.; Zhou, X.; Wang, Z. M.; Li, C. L.; Wang, S. P.; Zhai, T. Y.; Tao, X. T. Low-symmetry and nontoxic 2D SiP with strong polarization-sensitivity and fast photodetection. Adv. Opt. Mater. 2021, 9, 2100198.

[31]

Li, X. R.; Xie, X.; Wu, B.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Observation of robust anisotropy in WS2/BP heterostructures. Nano Res. 2024, 17, 6749–6756.

[32]

Zhang, S. L.; Guo, S. Y.; Huang, Y. X.; Zhu, Z.; Cai, B.; Xie, M. Q.; Zhou, W. H.; Zeng, H. B. Two-dimensional SiP: An unexplored direct band-gap semiconductor. 2D Mater. 2016, 4, 015030.

[33]

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

[34]

Wu, Z. T.; Zhao, W. W.; Jiang, J.; Zheng, T.; You, Y. M.; Lu, J. P.; Ni, Z. H. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 2017, 121, 12294–12299.

[35]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[36]

Seifert, P.; Kastl, C. The sum of symmetries is lower than its parts. Nat. Nanotechnol. 2023, 18, 844–845.

[37]

Zheng, X. M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J. X.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through Van der Waals interlayer coupling. Adv. Funct. Mater. 2022, 32, 2202658.

[38]

Ho, C. H.; Liu, Z. Z. Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy 2019, 56, 641–650.

[39]

Li, L.; Wen, P. T.; Yang, Y. J.; Huo, N. J.; Li, J. B. Improved anisotropy and piezoelectricity by applying in-plane deformation in monolayer WS2. J. Mater. Chem. C 2021, 9, 1396–1400.

[40]

Tian, H.; Tice, J.; Fei, R. X.; Tran, V.; Yan, X. D.; Yang, L.; Wang, H. Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today 2016, 11, 763–777.

[41]

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

Nano Research
Pages 8585-8591
Cite this article:
Hu B, Xie X, Ouyang X, et al. Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures. Nano Research, 2024, 17(9): 8585-8591. https://doi.org/10.1007/s12274-024-6857-1
Topics:

324

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 May 2024
Revised: 20 June 2024
Accepted: 01 July 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return